首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《公路》2015,(12)
由结构体系和受力特性共同决定,大纵肋正交异性钢桥面板纵肋与顶板焊缝以及纵肋与横隔板焊缝疲劳问题突出,是结构疲劳性能的控制部位。引入组合结构桥面板理念,通过在其顶板上铺设混凝土结构层组成新型组合桥面板,探索改善上述控制部位疲劳性能的新途径及其可行性,并通过与传统正交异性钢桥面板和薄层RPC组合桥面板两类关键疲劳易损部位的对比研究,验证其抗疲劳性能的优越性。研究结果表明,所提出的新型大纵肋正交异性钢—混凝土组合桥面板通过将混凝土结构层与正交异性钢桥面板组成协同受力体系,能够有效增强桥面板的整体受力性能和关键疲劳易损部位的疲劳性能,其典型疲劳易损部位的应力幅显著小于传统的正交异性钢桥面板,其疲劳性能优于传统的正交异性钢桥面板,是具有较好推广应用前景的新型桥面板结构形式。  相似文献   

2.
为综合解决正交异性钢桥面板疲劳开裂和铺装层易损的难题,提出了由正交异性钢桥面板与薄层超高韧性混凝土STC组合而成的轻型组合桥面板结构。由于STC层显著提高了桥面板的刚度,因此可对结构进行优化。在带U肋轻型组合桥面板的基础上,提出了带大U肋的轻型组合桥面板方案。将此方案拟应用于某大桥,与原结构相比,用钢量基本不变,而面板-U肋-隔板三者间焊缝总长度减少36%,不仅降低了施工难度,也减少了焊接缺陷,进一步解决了钢桥面板疲劳开裂的问题。采用4种不同的结构体系,建立了钢箱梁节段有限元模型,基于热点应力法,对体系的6个典型疲劳细节进行疲劳验算。结果表明:在大U肋轻型组合桥面板中,6个疲劳细节的应力水平与传统U肋轻型组合桥面板接近,降幅效果基本一致;同时,通过计算说明了大U肋轻型组合桥面板具有良好的横向受力性能,其栓钉也具有足够的抗疲劳性能。为探究此轻型组合桥面板STC层的纵向弯拉性能,开展了负弯矩条带足尺试验,确定大U肋轻型组合桥面板的STC顶层名义开裂应力为24.1 MPa,远超STC层计算最大拉应力10.92 MPa。以上分析初步表明:带大U肋的轻型组合桥面板有较好的疲劳和静力性能。  相似文献   

3.
为明确大纵肋正交异性钢-免蒸养UHPC组合桥面板的力学性能,进行免蒸养UHPC材料力学性能试验、构件静力模型试验与疲劳模型试验,分析其材料基本力学性能、剪力钉抗剪性能、组合桥面板抗弯性能及疲劳性能。结果表明:免蒸养UHPC材料的弹性模量略高于高温蒸养UHPC材料,其他力学性能指标相较于高温蒸养UHPC材料均有不同程度的降低;免蒸养UHPC中剪力钉的破坏模式表现为剪力钉根部剪断并伴有焊环局部UHPC压溃,组合桥面板名义开裂应力为13.7 MPa,满足结构抗裂性要求;组合桥面板的疲劳破坏模式表现为UHPC结构层开裂,继而纵肋与横隔板连接焊缝焊趾处疲劳开裂,组合桥面板的疲劳寿命最终由焊接细节的疲劳强度所控制;纵肋与横隔板连接焊缝的等效疲劳强度为157 MPa,满足现行规范要求。  相似文献   

4.
为了深刻认识高疲劳抗力钢桥面板的疲劳特性,准确评估其结构体系的疲劳抗力,基于等效结构应力建立了考虑焊接微裂纹对钢桥面板疲劳性能劣化效应的结构体系疲劳抗力评估方法,并通过疲劳试验对所建立的评估方法进行了验证。在此基础上采用所建立的结构体系疲劳抗力评估方法对高疲劳抗力钢桥面板的疲劳开裂模式、疲劳抗力及其影响因素等相关关键问题进行系统研究。研究结果表明:焊接微裂纹的存在会显著降低钢桥面板的疲劳性能,导致主导疲劳开裂模式发生迁移;结构体系设计参数对纵肋与顶板双面焊构造细节和纵肋与横隔板新型交叉构造细节疲劳性能的影响有显著区别,其中纵肋与顶板双面焊构造细节的疲劳性能主要对顶板厚度的变化较为敏感,其疲劳性能随着顶板厚度的增加而显著提升,而纵肋与横隔板新型交叉构造细节的疲劳性能同时受多个参数的影响,其疲劳性能随着顶板厚度、横隔板厚度和纵肋高度的增大而提升,随着横隔板间距和纵肋底板与横隔板之间焊缝长度的增大而降低;传统钢桥面板的主导疲劳开裂模式为纵肋腹板与横隔板交叉构造细节围焊焊趾开裂,高疲劳抗力钢桥面板的主导疲劳开裂模式为纵肋底板与横隔板交叉构造细节纵肋焊趾开裂;相对于传统正交异性钢桥面板,高疲劳抗力钢桥面板结构实现了主导疲劳开裂模式的迁移,疲劳性能显著提高。  相似文献   

5.
新型UHPC—大纵肋波折板正交异性桥面板取消了顶板与纵肋焊缝,减少了横隔板与纵肋焊缝,为改善正交异性钢桥面板控制部位的疲劳性能提供了一个有效新途径。然而,由于波折板与横隔板保留横向焊缝,其疲劳风险仍然可能存在,故针对纵肋与横隔板位置的关键疲劳细节,采用数值分析并结合热点应力法对各参数影响下的轮载应力幅和疲劳寿命进行评估验证。结果表明,新型组合桥面板的大纵肋波折钢板及横隔板的疲劳寿命主要受弧形切口顶应力幅控制,施工时应加强切口打磨质量,防止疲劳开裂。另外,UHPC板厚增大、横隔板间距减小以及横隔板厚度加大时,各疲劳细节应力幅均有减小趋势,但加大纵肋高度或填充混凝土补强纵肋后,其各疲劳细节应力幅增减趋势并不一致。通过合理参数设计可使得各疲劳细节应力幅趋势均匀,获得优异的抗疲劳性能。  相似文献   

6.
正交异性钢桥面板的疲劳问题属于多疲劳失效模式下的结构体系疲劳问题,为研究其结构体系的疲劳失效模式和疲劳抗力,以典型的正交异性钢桥面板为研究对象,提出基于主导疲劳失效模式的结构体系疲劳抗力评估方法。由正交异性钢桥面板的重要疲劳失效模式入手,设计3组共8个足尺节段模型,通过疲劳试验研究确定纵肋与顶板焊接细节和纵肋与横隔板交叉构造细节的重要疲劳失效模式及其实际疲劳抗力;基于所提出的结构体系疲劳抗力评估方法,探讨引入镦边纵肋和双面焊等新型构造细节条件下正交异性钢桥面板结构体系的疲劳抗力问题。研究结果表明:纵肋与顶板焊接细节主导疲劳失效模式为疲劳裂纹萌生于焊根并沿顶板厚度方向扩展,而纵肋与横隔板交叉构造细节主导疲劳失效模式为疲劳裂纹萌生于端部焊趾并沿纵肋腹板扩展;初始制造缺陷会显著降低正交异性钢桥面板重要疲劳失效模式的疲劳抗力并导致疲劳失效模式迁移;对于正交异性钢桥面板的结构体系而言,引入新型镦边纵肋与顶板焊接细节无法提高结构体系的疲劳抗力;而引入纵肋与顶板新型双面焊细节,可使结构体系的主导疲劳失效模式迁移至顶板焊趾或纵肋与横隔板交叉构造细节,结构体系的疲劳抗力得到显著提高。  相似文献   

7.
为了改善常规正交异性钢桥面板的疲劳开裂问题,提出新型半开口纵肋正交异性钢桥面板结构,该结构通过在纵肋底部开口实现顶板与纵肋双面焊接,提高焊缝质量,降低纵肋与横隔板的刚度差。为验证该新型钢桥面板的疲劳性能,设计制作钢桥面板节段足尺模型进行疲劳试验,采用应力应变法、数字图像法、声发射法等技术监测应力和裂纹发展。结果表明:在1 000万次循环加载过程中,新型钢桥面板各构造细节处均未出现疲劳裂纹;与常规正交异性钢桥面板相比,新型钢桥面板纵肋与横隔板连接处的应力幅大幅降低;新型钢桥面板结构显著改善了正交异性钢桥面板的抗疲劳性能。  相似文献   

8.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

9.
针对武汉军山长江大桥桥面铺装层损坏和正交异性钢桥面板疲劳开裂的问题,珠京方向半幅桥面改造为钢-超高性能混凝土轻型组合桥面结构,厚55 mm的超高性能混凝土(UHPC)层采用短栓钉与钢桥面板连接,与上部SMA10沥青混凝土(厚30 mm)采用环氧树脂粘结材料连接。利用ANSYS软件建立局部梁段有限元模型,进行改造前、后的疲劳细节处应力幅对比分析,并基于健康监测系统以及钢箱梁局部应变监测系统,对组合桥面改造后效果进行实时监测。结果表明:UHPC层对面板与U肋连接细节应力影响极为明显,与柔性铺装相比,应力降幅最高为86.4%,可极大降低钢桥面板的开裂风险;桥面改造后,U肋底部、顶板底部、横隔板构造细节处的应力幅值、等效应力均明显降低,可显著提高钢桥面板的疲劳寿命。  相似文献   

10.
《公路》2015,(7)
在车辆荷载作用下,正交异性钢桥面板的疲劳开裂对结构的疲劳性能以及使用安全性能具有较大的影响,钢桥面板中复杂的焊接连接细节成为裂纹出现的集中区域。依据在正交异性钢桥面板方面研究相对成熟的AASHTO、Eurocode和日本规范,结合我国公路钢结构桥梁设计规范(送审稿);通过数值分析得到疲劳敏感细节在各国标准疲劳车辆荷载下的应力响应,并按照规范对细节的疲劳强度进行验算。验算结果表明,疲劳细节的应力幅对轴重比较敏感;顶板与U肋细节的纵向影响线比横隔板与U肋焊接处的影响线短;顶板与U肋处细节和横隔板挖孔处细节更容易发生疲劳裂纹。  相似文献   

11.
正交异性钢桥面板的疲劳开裂问题是制约桥梁工程可持续发展的关键难题,亟需发展具有高疲劳抗力的正交异性钢桥面板。同时引入纵肋与顶板新型双面焊构造细节和纵肋与横隔板新型交叉构造细节2类构造细节,提出了一种高疲劳抗力钢桥面板,设计了2个足尺节段模型,通过模型试验确定了纵肋与顶板传统单面焊构造细节和新型双面焊构造细节的疲劳开裂模式和疲劳性能,采用扫描电子显微镜(SEM)确定了单面焊构造细节焊根和双面焊构造细节焊趾的初始微裂纹尺度;研究了纵肋与横隔板传统交叉构造细节和新型交叉构造细节的疲劳开裂模式。研究结果表明:纵肋与顶板传统单面焊构造细节的疲劳裂纹起裂于顶板焊根并沿顶板厚度方向扩展,其疲劳强度为98.7 MPa,新型双面焊构造细节的疲劳裂纹起裂于顶板内侧焊趾并沿顶板厚度方向扩展,其疲劳强度为123.2 MPa;传统单面焊构造细节焊根的初始微裂纹尺度显著大于新型双面焊构造细节焊趾的初始微裂纹尺度,初始微裂纹尺度的差异是2种开裂模式的疲劳抗力存在显著差异的主要原因;纵肋与横隔板传统交叉构造细节的疲劳裂纹起裂于纵肋腹板焊缝端部焊趾并沿纵肋腹板扩展,新型交叉构造细节的疲劳裂纹起裂于纵肋底板焊缝端部焊趾并沿纵肋底板扩展,2类构造细节的起裂次数基本一致,但新型交叉构造细节的疲劳裂纹扩展速率远低于传统构造细节;相同加载条件下,高疲劳抗力钢桥面板结构体系的疲劳寿命显著优于传统钢桥面板结构体系。  相似文献   

12.
针对目前大纵肋正交异性钢桥面板疲劳影响因素及抗疲劳性能研究较少的情况,本文基于有限元软件ANSYS,分别建立普通和大纵肋两个正交异性钢桥面板有限元模型,以3个典型疲劳细节为研究对象,基于最大主应力为评价指标,研究不同横肋板、U肋和顶板厚度的工况下两个正交异形钢桥面板的疲劳敏感性,详细对比了普通和大纵肋两个正交异性钢桥面板的疲劳特征。  相似文献   

13.
为研究钢桥面板疲劳开裂局部区域引入钢或高性能材料加固构件的装配式加固方法,以钢桥面板纵肋与横隔板交叉构造细节为研究对象,采用足尺模型试验对钢桥面板纵肋与横隔板交叉构造细节疲劳性能劣化及其疲劳开裂的栓接角钢装配式快速加固相关关键问题进行了试验和理论研究;基于断裂力学探究了纵肋与横隔板交叉构造细节三维疲劳裂纹的扩展特性、疲劳寿命预测及装配式快速加固方法的加固效果。研究结果表明:纵肋与横隔板交叉构造细节的疲劳裂纹萌生于焊趾并沿纵肋腹板进行扩展,其对结构力学特性的影响范围和程度随着裂纹的扩展而逐步加剧;加固后相应开裂部位关键测点和裂尖各测点的应力应变降幅分别达57%和80%,装配式加固构件与既有结构协同受力性能良好,能够有效抑制局部疲劳裂纹扩展;数值断裂力学分析表明,加固后裂尖应力强度因子降幅达90%,可有效抑制疲劳裂纹的进一步扩展。  相似文献   

14.
为提高正交异性钢桥面板U肋与钢桥面板连接焊缝的疲劳耐久性,开发了正交异性钢桥面板U肋内焊技术,通过龙门焊接平台驱动连杆,将6台内焊机器人送入6根U肋内部同时进行12条内侧角焊缝的焊接。解决了U肋内焊设备、工艺、检测、返修等方面的关键技术,实现U肋内焊的可靠、优质、高效焊接。U肋内焊技术将U肋与钢桥面板之间的连接焊缝由单面角焊缝改变为双面角焊缝形式,从根本上改善U肋焊缝焊根处应力集中问题,避免从焊缝焊根处产生疲劳裂纹,同时大幅提高桥面板焊趾处疲劳性能,正交异性钢桥面板U肋内焊技术成功应用于武汉沌口长江公路大桥工程中。此外,结合U肋内焊技术,提出了U肋与横隔板交叉处新构造方案,以期全面提升正交异性钢桥面板疲劳耐久性。  相似文献   

15.
针对柔性铺装正交异性钢桥面板存在的钢板疲劳开裂和铺装层极易损坏的问题,提出超高性能混凝土(UHPC)-钢正交异性板组合桥面体系。以武汉军山长江大桥为背景,通过ANSYS有限元仿真计算分析该组合桥面体系正交异性板相对于柔性铺装正交异性板受力性能的改善情况,并通过单U肋2跨连续梁足尺模型试验对UHPC层的受力性能进行研究。研究结果表明:采用组合桥面后正交异性板各构造细节的应力大幅下降,其中面板应力降幅最大,加劲肋次之,横隔板最小;采用UHPC-钢正交异性板组合桥面体系后正交异性板主要构造细节最不利热点应力幅降至常幅疲劳极限以下,理论上具有无限疲劳寿命;模型试验显示在实桥最不利应力作用下,UHPC层未发现可见裂纹,当名义应力达到18.79 MPa时在模型中支撑板顶部UHPC上发现0.05mm宽的裂纹。  相似文献   

16.
为给正交异性钢桥面板结构型式设计提供参考,以邓文中和Kazuyuki Mizuguchi给出的新型大纵肋型式为基础,对3种纵肋型式的正交异性板结构模型分别施加横纵向荷载,考察3处疲劳易损细节的应力幅值,以此为主要指标分析各关键易损部位的疲劳性能。研究结果表明:在纵肋-顶板焊缝附近,新型大纵肋结构产生的应力幅偏高,加入内置小隔板可以使此部位的疲劳性能得到改善;而在纵肋-横隔板相交部位,新型大纵肋模型中各考察位置的应力幅值比传统纵肋模型中的要小。新型大纵肋结构可以明显减少焊缝数量,这对降低加工成本,控制疲劳病害是有益的。  相似文献   

17.
为研究新型热轧纵肋正交异性钢桥面板的纵肋-盖板焊接接头的疲劳性能,以已有大跨度公路桥梁为背景,分别建立传统典型纵肋桥面板和新型热轧纵肋桥面板模型,利用ABAQUS有限元程序对多种轮位加载工况下2种桥面板的焊接接头关注点的疲劳应力幅进行对比分析,并分析了内横隔板对降低肋壁关注点应力幅所起的作用.研究表明,与典型纵肋桥面板相比,新型纵肋正交异性钢桥面板盖板上的应力关注点应力幅更小,而肋壁上的关注点应力幅稍大;在新型纵肋桥面板的肋壁内增设顶部小横隔板可降低其在荷载作用下产生的应力幅值;新型纵肋正交异性钢桥面板在自重和加工成本方面工程应用前景良好.  相似文献   

18.
为改善当前大跨径钢桥钢箱梁桥面板普遍存在疲劳开裂的现状,提升钢桥面铺装体系正常服役寿命,提出了一种钢-超高延性混凝土组合桥面方案:组合桥面主要由正交异性钢桥面板、配筋超高延性混凝土层和沥青磨耗层组成,钢桥面板上表面焊接栓钉,并设置防水黏结层,超高延性混凝土层与钢桥面板间通过栓钉相连,超高延性混凝土层上表面采取表面粗糙处理,并设置防水黏结层,确保与其上的沥青磨耗层之间形成可靠连接。以虎门大桥钢箱梁为背景,采用有限元软件Abaqus对所提出的组合桥面铺装体系进行了力学性能分析。分析结果表明:采用组合桥面铺装体系,可明显提升正交异性钢桥面铺装体系的整体刚度,使得正交异性钢桥面板关键受力部位的应力水平降低25%~45%,显著延长钢桥面板疲劳寿命。制作了足尺钢箱梁子结构试验模型并开展了疲劳试验研究,疲劳试验结果表明:在规范规定的疲劳车荷载及高于疲劳车荷载的疲劳荷载作用下,累计经历400万次疲劳试验后,组合桥面铺装结构铺装层和钢桥面板均未出现破坏迹象,采用钢-超高延性混凝土组合桥面,可有效延长钢桥面铺装结构使用寿命。研究成果为既有存在病害的钢桥钢箱梁承载力的恢复甚至提高,乃至新建钢桥的桥面铺装提供了一种有益的选择方案。  相似文献   

19.
本文选取U肋与桥面板连接区域、U肋与横隔板交叉部位、U肋等细节,通过实桥静力试验,结合有限元模型分析,研究正交异性钢桥面板局部应力的大小和分布规律.结果表明:钢桥面板各关键构造细节的应力影响线都比较短,纵向应力主要受两个横隔板间距的影响,横向应力受与其相邻的两个U肋间距内荷载的影响;当车辆通过时,测点会出现多个应力循环;在U肋-横隔板连接焊缝附近,U肋腹板上的应力水平较高;横隔板弧形切口自由边缘两侧应力性质相反,一侧受压、一侧受拉,应力幅值较大,存在疲劳开裂隐患;因此设计中应该对构造细节进行详细研究分析,并注意焊接区域的细部设计与制造,避免疲劳开裂.  相似文献   

20.
随着正交异性钢桥面板梁结构的普及应用,该结构形式相关的病害案例不断出现,常有铺装损坏、板件裂纹、构件断裂等。结合某跨江桥梁横隔板裂纹处治案例,分析了正交异性钢桥面板在车辆超载情况下出现疲劳的合理性;闭口加劲肋过焊孔疲劳细节对横隔板疲劳性能影响较大,例桥中加劲肋过焊孔形式与当前经常采用细节优劣。横隔板厚度及横隔板连续性对横隔板疲劳性能的影响。得出闭口加劲肋顶缘过焊孔堆焊封起有利于构件疲劳性能,闭口加劲肋弧形缺口形状及尺寸大小会影响构件疲劳性能等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号