首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在大纵肋正交异性钢桥面板结构中引入混凝土结构层,通过栓钉将钢桥面板与混凝土结构层组成新型大纵肋正交异性组合桥面板,是从结构体系层面提高大纵肋正交异性钢桥面板疲劳性能的有效途径。基于有限元数值分析,明确了大纵肋正交异性组合桥面体系对于钢桥面板典型疲劳易损细节的应力幅改善效果;采用足尺节段模型试验对结构的关键疲劳易损细节进行了疲劳试验研究,验证了关键疲劳易损细节在设计寿命期内的抗疲劳安全性和混凝土结构层在疲劳荷载作用下的耐久性,在此基础上对关键疲劳易损细节的疲劳损伤演化及结构体系的疲劳破坏模式进行了试验与理论研究。研究结果表明:大纵肋正交异性组合桥面板结构体系能够显著降低U肋与顶板以及U肋与横隔板连接细节的应力幅,横隔板开孔部位是控制钢桥面板疲劳性能的关键构造细节;设计寿命期内钢桥面板疲劳性能与混凝土结构层的疲劳耐久性均满足要求,且具有一定的安全储备;混凝土结构层负弯矩区疲劳开裂对钢桥面板各疲劳易损细节疲劳性能的影响不显著;大纵肋正交异性组合桥面板的疲劳破坏模式表现出典型的两阶段特征,栓钉发生疲劳断裂并导致组合效应局部劣化,进而加速钢桥面板关键疲劳易损细节的疲劳损伤累积速度并最终发生疲劳开裂。  相似文献   

2.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

3.
《公路》2015,(12)
由结构体系和受力特性共同决定,大纵肋正交异性钢桥面板纵肋与顶板焊缝以及纵肋与横隔板焊缝疲劳问题突出,是结构疲劳性能的控制部位。引入组合结构桥面板理念,通过在其顶板上铺设混凝土结构层组成新型组合桥面板,探索改善上述控制部位疲劳性能的新途径及其可行性,并通过与传统正交异性钢桥面板和薄层RPC组合桥面板两类关键疲劳易损部位的对比研究,验证其抗疲劳性能的优越性。研究结果表明,所提出的新型大纵肋正交异性钢—混凝土组合桥面板通过将混凝土结构层与正交异性钢桥面板组成协同受力体系,能够有效增强桥面板的整体受力性能和关键疲劳易损部位的疲劳性能,其典型疲劳易损部位的应力幅显著小于传统的正交异性钢桥面板,其疲劳性能优于传统的正交异性钢桥面板,是具有较好推广应用前景的新型桥面板结构形式。  相似文献   

4.
正交异性钢桥面板是大跨度桥梁结构主要桥面板形式.为深入研究车辆轮迹线位置对钢桥面板疲劳部位应力的影响,以纵肋与顶板双面焊焊接接头为研究对象,基于ANSYS有限元软件,选取三种典型疲劳车辆轮迹线加载形式,得到了该部位热点应力历程.车辆骑纵肋加载和纵肋间加载均具有较大的疲劳应力,设计时应将轮迹线尽量布置在纵肋正上方位置.  相似文献   

5.
为研究新型热轧纵肋正交异性钢桥面板的纵肋-盖板焊接接头的疲劳性能,以已有大跨度公路桥梁为背景,分别建立传统典型纵肋桥面板和新型热轧纵肋桥面板模型,利用ABAQUS有限元程序对多种轮位加载工况下2种桥面板的焊接接头关注点的疲劳应力幅进行对比分析,并分析了内横隔板对降低肋壁关注点应力幅所起的作用.研究表明,与典型纵肋桥面板相比,新型纵肋正交异性钢桥面板盖板上的应力关注点应力幅更小,而肋壁上的关注点应力幅稍大;在新型纵肋桥面板的肋壁内增设顶部小横隔板可降低其在荷载作用下产生的应力幅值;新型纵肋正交异性钢桥面板在自重和加工成本方面工程应用前景良好.  相似文献   

6.
正交异性钢桥面板的疲劳问题属于多疲劳失效模式下的结构体系疲劳问题,为研究其结构体系的疲劳失效模式和疲劳抗力,以典型的正交异性钢桥面板为研究对象,提出基于主导疲劳失效模式的结构体系疲劳抗力评估方法。由正交异性钢桥面板的重要疲劳失效模式入手,设计3组共8个足尺节段模型,通过疲劳试验研究确定纵肋与顶板焊接细节和纵肋与横隔板交叉构造细节的重要疲劳失效模式及其实际疲劳抗力;基于所提出的结构体系疲劳抗力评估方法,探讨引入镦边纵肋和双面焊等新型构造细节条件下正交异性钢桥面板结构体系的疲劳抗力问题。研究结果表明:纵肋与顶板焊接细节主导疲劳失效模式为疲劳裂纹萌生于焊根并沿顶板厚度方向扩展,而纵肋与横隔板交叉构造细节主导疲劳失效模式为疲劳裂纹萌生于端部焊趾并沿纵肋腹板扩展;初始制造缺陷会显著降低正交异性钢桥面板重要疲劳失效模式的疲劳抗力并导致疲劳失效模式迁移;对于正交异性钢桥面板的结构体系而言,引入新型镦边纵肋与顶板焊接细节无法提高结构体系的疲劳抗力;而引入纵肋与顶板新型双面焊细节,可使结构体系的主导疲劳失效模式迁移至顶板焊趾或纵肋与横隔板交叉构造细节,结构体系的疲劳抗力得到显著提高。  相似文献   

7.
以在建洞庭湖二桥为工程背景,建立两种纵肋形式的轻型组合桥面板局部有限元模型,对比分析了两类结构的静力和疲劳性能。结果表明:与传统正交异性钢桥面板相比,轻型组合桥面板的静力和疲劳性能均有一定程度的改善,且全寿命经济效益显著;带开口肋的轻型组合桥面板基本消除了传统开口肋正交异性钢桥面板的纵肋过柔,荷载横向分配能力较差等缺点,应用前景广阔。  相似文献   

8.
为了改善常规正交异性钢桥面板的疲劳开裂问题,提出新型半开口纵肋正交异性钢桥面板结构,该结构通过在纵肋底部开口实现顶板与纵肋双面焊接,提高焊缝质量,降低纵肋与横隔板的刚度差。为验证该新型钢桥面板的疲劳性能,设计制作钢桥面板节段足尺模型进行疲劳试验,采用应力应变法、数字图像法、声发射法等技术监测应力和裂纹发展。结果表明:在1 000万次循环加载过程中,新型钢桥面板各构造细节处均未出现疲劳裂纹;与常规正交异性钢桥面板相比,新型钢桥面板纵肋与横隔板连接处的应力幅大幅降低;新型钢桥面板结构显著改善了正交异性钢桥面板的抗疲劳性能。  相似文献   

9.
为研究正交异性钢桥面板纵肋对接焊缝的疲劳敏感区域,确定合理的构造参数,设计制作2个带纵肋对接焊缝的钢桥面板模型试件进行疲劳试验,采用ANSYS软件建立钢桥面板有限元模型计算纵肋对接焊缝截面的纵向应力,建立纵肋对接焊缝子模型分析焊缝宽度、形状和纵肋厚度对焊缝截面纵向应力的影响。结果表明:2个试件的疲劳裂纹均出现在纵肋对接焊缝外侧圆弧过渡区,然后向纵肋底部和腹板延伸;纵肋对接焊缝截面的纵向应力在底部水平段和圆弧过渡区较大,且在外侧圆弧过渡区存在应力集中,为疲劳敏感区域;减小焊缝宽度、优化焊缝形状、增大纵肋厚度均能减小焊缝截面的纵向应力,提高疲劳性能,其中增加纵肋厚度效果最显著。  相似文献   

10.
为研究U肋内隔板及其参数对正交异性钢桥面板疲劳性能的影响,以某钢桁梁柔性拱铁路桥为背景,针对其钢桥面板制作2个足尺模型(试件1无内隔板,试件2设置内隔板)进行疲劳试验,研究疲劳裂纹的产生情况,采用ANSYS软件建立有限元模型,分析产生裂纹处纵肋腹板的应力分布情况,应用断裂力学方法评估钢桥面板的疲劳寿命,并分析内隔板参数对钢桥面板应力的影响。结果表明:纵肋腹板与横梁帽孔交汇处易发生疲劳裂纹,2个试件均在此处出现疲劳裂纹;设置纵肋内隔板能改善纵肋腹板与横梁帽孔交汇处的应力集中现象,有效提高纵肋腹板和横梁帽孔处的疲劳强度;内隔板厚度对钢桥面板的应力影响不大,适当增加内隔板高度差可减小纵肋腹板处主应力。  相似文献   

11.
通过对国内外正交异性钢桥面板的研究发现,其破坏的主要形式是钢桥面板的疲劳破坏,针对钢桥面板在使用过程中发生疲劳破坏的原因,以东莞水道桥为依托,选取了纵向加劲肋类型、横隔板挖孔形式及纵肋内小隔板焊接形式三个主要参数,研究正交异性钢桥面板在不同参数下的疲劳应力及应力集中系数变化情况。研究结果表明:与开口加劲肋相比,闭口加劲肋的加劲效率更高,U形肋的应力集中系数显著低于其他三种截面形式纵肋;在车辆荷载作用下,当横隔板采用梯形开孔形式时,其与纵肋、顶板间的焊缝处应力水平比较均衡;通过设置小横隔对桥面板刚度进行局部增强,能有效降低顶板与纵肋、顶板与横隔板、纵肋与横隔板间三处焊缝的应力水平和应力集中程度。  相似文献   

12.
针对正交异性钢桥面板,设计了相应的典型焊接构造细节,并进行了疲劳试验研究.疲劳试验结果表明,(1)横肋受力比较复杂,在箱梁端部横隔板与纵肋焊接位置下端首先出现细微的疲劳裂纹;(2)纵肋与顶板焊缝连接处外侧顶板与纵肋的损伤发展较大,疲劳破坏的位置为面板与纵肋交汇处焊缝构造,且均发生在面板母材上,而内侧顶板则无明显的损伤.同时,基于残余应变模型,研究了正交异性钢桥面板损伤发展历程,并利用连续分段函数模型描述整个寿命过程中的损伤累积规律,与已有试验资料对比表明了该函数模型的正确性.  相似文献   

13.
正交异性钢桥面板的疲劳寿命评估   总被引:5,自引:0,他引:5  
钢桥疲劳是由于各种车辆轮载反复作用引起的累积损伤过程,很容易疲劳开裂,因此疲劳验算是钢桥面板设计中的一项重要任务。利用静力试验的应力结果,并结合ANSYS有限元数值计算,提出了闭口纵肋正交异性钢桥面板的疲劳验算方案,在理论上对钢桥面板进行了寿命的具体分析。  相似文献   

14.
采用模型试验及空间有限元计算分析方法研究聚氨酯-钢板夹层结构正交异性三跨连续桥面板的力学特性,并对比了不同桥面板车轮作用点处,截面受局部应力影响的纵横向应力分布。结果表明:与普通正交异性钢桥面板相比,夹层桥面板能大幅降低局部应力集中,应力峰值约为普通正交异性钢桥面板的1/3~1/2,并可大幅减少焊缝疲劳裂纹的出现;由于夹层板自身刚度大幅提高,能大幅减少纵向加劲肋数量并减少50%以上的焊缝,从而节省钢材,减轻自重;聚氨酯-钢板夹层结构正交异性桥面板的应变试验测试值与有限元计算值基本吻合。  相似文献   

15.
《世界桥梁》2021,49(3)
夹层板系统(Sandwich Plate System, SPS)是由上、下2层钢板和中间1层聚氨酯弹性体芯层形成的一种复合结构,可应用于正交异性钢桥面板以优化桥面结构力学性能。为探究正交异性夹层钢桥面板的力学性能特点,并提出夹层板构造的合理化建议,针对正交异性夹层钢桥面板开展了有限元模拟与参数化分析。结果表明:正交异性夹层钢桥面板在车轮荷载作用下的位移、应力等性能指标均优于传统正交异性钢桥面板;正交异性夹层钢桥面板的芯层厚度合理取值为40~80 mm;夹层板上层钢板厚度宜大于下层钢板,且下层钢板厚度不宜太薄;通过减少纵肋数量、增大纵肋间距可在不增大应力水平的条件下减少焊缝数量。SPS夹层钢桥面板具有良好的力学性能,可在实际工程中开展应用。  相似文献   

16.
为给正交异性钢桥面板结构型式设计提供参考,以邓文中和Kazuyuki Mizuguchi给出的新型大纵肋型式为基础,对3种纵肋型式的正交异性板结构模型分别施加横纵向荷载,考察3处疲劳易损细节的应力幅值,以此为主要指标分析各关键易损部位的疲劳性能。研究结果表明:在纵肋-顶板焊缝附近,新型大纵肋结构产生的应力幅偏高,加入内置小隔板可以使此部位的疲劳性能得到改善;而在纵肋-横隔板相交部位,新型大纵肋模型中各考察位置的应力幅值比传统纵肋模型中的要小。新型大纵肋结构可以明显减少焊缝数量,这对降低加工成本,控制疲劳病害是有益的。  相似文献   

17.
结合正交异性钢桥面板的足尺模型试验和有限元数字分析方法,研究和探讨正交异性钢桥面板的疲劳强度和疲劳裂纹.通过静载和动载试验,研究纵向U肋与横梁接缝的应力特点和疲劳裂纹特性.用应变能密度因子方法分析疲劳裂纹的扩展,研究在裂纹尖端设止裂孔的裂纹维修方法的有效性.  相似文献   

18.
为了深刻认识高疲劳抗力钢桥面板的疲劳特性,准确评估其结构体系的疲劳抗力,基于等效结构应力建立了考虑焊接微裂纹对钢桥面板疲劳性能劣化效应的结构体系疲劳抗力评估方法,并通过疲劳试验对所建立的评估方法进行了验证。在此基础上采用所建立的结构体系疲劳抗力评估方法对高疲劳抗力钢桥面板的疲劳开裂模式、疲劳抗力及其影响因素等相关关键问题进行系统研究。研究结果表明:焊接微裂纹的存在会显著降低钢桥面板的疲劳性能,导致主导疲劳开裂模式发生迁移;结构体系设计参数对纵肋与顶板双面焊构造细节和纵肋与横隔板新型交叉构造细节疲劳性能的影响有显著区别,其中纵肋与顶板双面焊构造细节的疲劳性能主要对顶板厚度的变化较为敏感,其疲劳性能随着顶板厚度的增加而显著提升,而纵肋与横隔板新型交叉构造细节的疲劳性能同时受多个参数的影响,其疲劳性能随着顶板厚度、横隔板厚度和纵肋高度的增大而提升,随着横隔板间距和纵肋底板与横隔板之间焊缝长度的增大而降低;传统钢桥面板的主导疲劳开裂模式为纵肋腹板与横隔板交叉构造细节围焊焊趾开裂,高疲劳抗力钢桥面板的主导疲劳开裂模式为纵肋底板与横隔板交叉构造细节纵肋焊趾开裂;相对于传统正交异性钢桥面板,高疲劳抗力钢桥面板结构实现了主导疲劳开裂模式的迁移,疲劳性能显著提高。  相似文献   

19.
为改善传统正交异性钢桥面板纵肋与横肋交叉构造细节的疲劳性能,提高其疲劳抗力,提出一种新型承托式横肋开孔形式,采用ANSYS软件建立大纵肋组合桥面板节段有限元模型,基于热点应力法和线性损伤累积理论分析纵肋与横肋交叉构造细节的疲劳性能,并与4种典型横肋开孔形式进行对比。结果表明:在不考虑残余应力的情况下,相对于4种典型横肋开孔形式,新型承托式横肋开孔形式的疲劳性能显著提高;纵肋与横肋交叉构造细节最大应力幅的出现位置转移至纵肋底部与横肋焊趾对应处内侧,应力幅为30.2MPa,满足设计要求;纵肋底部焊趾处应力为压应力。新型承托式横肋开口形式能够改善纵肋与横肋交叉构造细节的疲劳性能。  相似文献   

20.
正交异性钢桥面板作为大跨度桥梁的首选桥面板结构,实时监测并准确识别其重要构造细节的疲劳损伤程度,在此基础上预测剩余疲劳寿命,对于大跨度桥梁的服役期管理维护决策至关重要;但正交异性钢桥面板的疲劳问题具有多尺度、多模式、随机性、隐蔽性等特性,且其对结构静动力响应的影响仅限于疲劳裂纹附近的局部区域,传统的损伤识别方法难以准确识别。结合智能技术的最新发展和正交异性钢桥面板疲劳问题的基本属性,构建了其疲劳损伤智能监测与评估系统,并对其疲劳损伤指标和疲劳损伤智能评估的相关关键问题进行研究。提出了基于等效结构应力的正交异性钢桥面板多尺度疲劳损伤评估方法;建立了考虑随机因素的结构体系实时疲劳损伤评估及剩余寿命预测方法;构建了正交异性钢桥面板疲劳损伤智能监测与评估系统;基于实际桥梁结构的交通量和结构响应监测信息,对所建立的正交异性钢桥面板疲劳损伤智能监测与评估系统进行了验证。研究结果表明:在实际交通荷载作用下,顶板与纵肋连接细节的疲劳主导失效模式为焊根部位起裂沿顶板扩展,所提出的疲劳损伤评估方法的评估结果与实际结构一致,表明所提出的方法能够准确确定结构体系的疲劳失效模式;疲劳损伤智能监测与评估系统所确定的实桥疲劳损伤及剩余寿命预测结果与实际桥梁疲劳损伤开裂时间基本一致;所建立的智能监测与评估系统可为正交异性钢桥面板疲劳损伤过程和寿命评估提供理论依据及支撑,并为实桥的运营管理养护决策提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号