首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
This study examines the impact of using hybrid vehicles for passenger transportation on carbon emissions in the Japanese energy system. A partial equilibrium model of the energy sector has been developed to forecast changes in the energy system out to the year 2040. The model can account for changes in technology capacities, fuels, and consumption in response to policy initiatives, such as taxes. We find that hybrid vehicles are more efficient in reducing carbon dioxide emission than conventional vehicles. Hybrid vehicles have a great impact on reducing carbon emissions when BTU taxes are imposed, which in turn has the advantage of encouraging a more diverse set of technologies and fuels.  相似文献   

2.
A dispatching problem with random availability of vehicles and options to send rented vehicles is considered. We assume passenger arrivals to be described by a pure-birth process. Such a problem is analytically attractive and is shown to have practical applications in vehicle dispatching models. An average cost criterion is used to determine firm's fleet size and option (renting) strategy.  相似文献   

3.
U-turns are treated as left-turns in the current procedures for estimating saturation flow rates at signalized intersections. While U-turning vehicles are usually mixed with left-turning vehicles in inside or left-turn lanes and conflict with opposing through traffic as left-turning vehicles, the vehicle operating characteristics are different. The objective of this paper is to investigate the effects of U-turns on the traffic flow in left-turn lanes. Field data of 600 headways of left-turning passenger cars and 160 headways of U-turning passenger cars are recorded. The average headways of U-turning passenger cars are found to be significantly larger than those of left-turning passenger cars. The effects of U-turning vehicles depend upon the percent of U-turning vehicles in the left-turn lane, as well as the order of formation in the traffic stream. Adjustment factors for varying percents of U-turning vehicles in left-turn lanes are established.  相似文献   

4.
This paper is the second of a two part study which quantifies the economic and greenhouse performance of conventional, hybrid and fully electric passenger vehicles operating in Australian driving conditions. This second study focuses on the life cycle greenhouse gas emissions. Two vehicle sizes are considered, Class-B and Class-E, which bracket the large majority of passenger vehicles on Australian roads.Using vehicle simulation models developed in the first study, the trade-offs between the ability of increasingly electric powertrains in curtailing the tailpipe emissions and the corresponding rise in the embedded vehicle emissions have been evaluated. The sensitivity of the life cycle emissions to fuel, electricity and the change in the energy mix are all considered. In conjunction with the total cost of ownership calculated in the companion paper, this allows the cost of mitigating life cycle greenhouse gas emissions through electrification of passenger transport to be estimated under different scenarios. For Class-B vehicles, fully electric vehicles were found to have a higher total cost of ownership and higher life cycle emissions than an equivalent vehicle with an internal combustion engine. For Class-E vehicles, hybrids are found to be the most cost effective whilst also having lowest life cycle emissions under current conditions. Further, hybrid vehicles also exhibit little sensitivity in terms of greenhouse emissions and cost with large changes in system inputs.  相似文献   

5.
This work investigates the effect of heavy commercial vehicles on the capacity and overall performance of congested freeway sections. Furthermore, the following behaviors of heavy commercial vehicles and its comparison with passenger cars are presented. Freeways are designed to facilitate the flow of traffic including passenger cars and trucks. The impact of these different vehicle types is not uniform, creating problems in freeway operations and safety particularly under heavy demand with a high proportion of heavy vehicles. There have been very few studies concerned with the traffic behavior and characteristics of heavy vehicles in these situations. This study draws on extensive data collected over a long stretch of freeway using videotaping and surveys at several sites. The collected data were firstly used to study the interaction between heavy vehicles and passenger cars. Through a detailed trajectory analysis, the following behaviors of 120 heavy vehicles were then analyzed to provide a thorough understanding of heavy vehicles‐following behavior mechanism. The results showed a significant difference in the following behavior of heavy vehicles compared with other vehicles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Changing market regulations in South Korea have allowed diesel-fueled passenger cars in the domestic market. The diffusion of diesel cars is tied to issues of environmental impact, energy supply and demand, and changes in tax revenue. Policymakers can influence demand for diesel vehicles to protect social welfare and to observe international environmental protection laws. On the supply side, carmakers need to know consumer preferences regarding new vehicles to arrive at development strategies.This study uses microsimulated demand forecasting to address these issues and predict consumer demand for diesel passenger cars. The model accommodates governmental policies and car attributes such as price and engine efficiency. We find that consumers will likely prefer diesel passenger cars to gasoline ones due to the low operation costs of the former in spite of high purchase price when diesel is relatively cheaper than gasoline. Finally we find that diesel passenger cars will capture a 42% market penetration ratio under the pricing system suggested by the Ministry of Environment of Korea.  相似文献   

7.
This paper introduces an innovative transportation concept called Flexible Mobility on Demand (FMOD), which provides personalized services to passengers. FMOD is a demand responsive system in which a list of travel options is provided in real-time to each passenger request. The system provides passengers with flexibility to choose from a menu that is optimized in an assortment optimization framework. For operators, there is flexibility in terms of vehicle allocation to different service types: taxi, shared-taxi and mini-bus. The allocation of the available fleet to these three services is carried out dynamically so that vehicles can change roles during the day. The FMOD system is built based on a choice model and consumer surplus is taken into account in order to improve passenger satisfaction. Furthermore, profits of the operators are expected to increase since the system adapts to changing demand patterns. In this paper, we introduce the concept of FMOD and present preliminary simulation results. It is shown that the dynamic allocation of the vehicles to different services provides significant benefits over static allocation. Furthermore, it is observed that the trade-off between consumer surplus and operator’s profit is critical. The optimization model is adapted in order to take into account this trade-off by controlling the level of passenger satisfaction. It is shown that with such control mechanisms FMOD provides improved results in terms of both profit and consumer surplus.  相似文献   

8.
Ridesharing can reduce the fuel consumed in noncommercial passenger highway vehicles by grouping individuals into fewer vehicles and reducing the number of miles that vehicles must travel. We estimate the potential fuel savings that could result from an increase in ridesharing in the US. If no additional travel is required to pick up passengers, adding one additional passenger for every 100 vehicles would reduce annual fuel consumption by 0.80–0.82 billion gallons of gasoline per year; if one passenger were added in every 10 vehicles, the potential savings would be 7.54–7.74 billion gallons per year. However, ridesharing may require extra travel to pick up additional passengers, which can reduce and possibly eliminate potential fuel savings. The tradeoff between saving fuel and spending time to pick up additional passengers is investigated, finding that, on average, ridesharing may not be attractive to travelers, but can be made more attractive by increasing per-vehicle-trip costs such as parking and tolls.  相似文献   

9.
This work examines the impact of heavy vehicle movements on measured traffic characteristics in detail. Although the number of heavy vehicles within the traffic stream is only a small percentage, their impact is prominent. Heavy vehicles impose physical and psychological effects on surrounding traffic flow because of their length and size (physical) and acceleration/deceleration (operational) characteristics. The objective of this work is to investigate the differences in traffic characteristics in the vicinity of heavy vehicles and passenger cars. The analysis focuses on heavy traffic conditions (level of service E) using a trajectory data of highway I‐80 in California. The results show that larger front and rear space gaps exist for heavy vehicles compared with passenger cars. This may be because of the limitations in manoeuvrability of heavy vehicles and the safety concerns of the rear vehicle drivers, respectively. In addition, heavy vehicle drivers mainly keep a constant speed and do not change their speed frequently. This work also examines the impact of heavy vehicles on their surrounding traffic in terms of average travel time and number of lane changing manoeuvres using Advanced Interactive Microscopic Simulator for Urban and Non‐Urban Networks (AIMSUN) microscopic traffic simulation package. According to the results, the average travel time increases when proportion of heavy vehicles rises in each lane. To reflect the impact of heavy vehicles on average travel time, a term related to heavy vehicle percentage is introduced into two different travel time equations, Bureau of Public Roads and Akçelik's travel time equations. The results show that using an exclusive term for heavy vehicles can better estimate the travel times for more than 10%. Finally, number of passenger car lane changing manoeuvres per lane will be more frequent when more heavy vehicles exist in that lane. The influence of heavy vehicles on the number of passenger car lane changing is intensified in higher traffic densities and higher percentage of heavy vehicles. Large numbers of lane changing manoeuvres can increase the number of traffic accidents and potentially reduce traffic safety. The results show an increase of 5% in the likelihood of accidents, when percentage of heavy vehicles increases to 30% of total traffic. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This paper provides an overview of the transit operational planning process with an emphasis on certain aspects of new methodologies in scheduling. The transit scheduling system usually consists of three interelated components: (1) creation of timetables; (2) scheduling vehicles to trips; and (3) assignment of drivers. These three components are described, but with a focus on the first component because of its importance from the user's perspective. The design of a transit timetable is discussed from both a practical and an analytical viewpoint. A methodology is presented on the construction of alternative computerized public timetables, based on procedures that improve the correspondence of vehicle departure times with passenger demand. The vehicle scheduling procedure is viewed through the minimization of the number of vehicles required to carry out a fixed or variable timetable. Finally, different approaches to the crew assignment component are briefly discussed. The overview and methodologies presented in the paper suggest that most scheduling tasks can be performed automatically or in a conversational man-computer mode. The adoption of new scheduling procedures will undoubtedly increase the efficiency of each of the three components of the transit scheduling system.  相似文献   

11.
ABSTRACT

In this paper we focus on the estimation of crowding in public transport – specifically urban rail systems – and its effect on perceived comfort. It is different from similar studies in the method it employs for estimating crowding levels in vehicles. Specifically, we formulate a function of time and location, which uses only passenger embarking data to estimate the number of passengers in vehicles. Then we convert the estimated crowding values into perceived discomfort levels by trip section. Our method depends on hourly seasonality assumptions but provides good estimates of crowding in urban rail systems even when passenger alighting data is not available. We illustrate the implementation of our model with the example of the Istanbul Metro system.  相似文献   

12.
This paper presents a new methodology for computing passenger car equivalents at signalized intersections that is based on the delay concept. Unlike the commonly used headway-based methods that consider only the excess headway consumed by trucks, the delay-based approach fully considers the additional delay heavy vehicles cause on traffic stream. Delay-based passenger car equivalents are not constant, but depend on traffic volume, truck type and truck percentage. The field data indicated that the passenger car equivalents increase as the traffic volume and the percentage of heavy vehicles increase. The field data were used to calibrate TRAF-NETSIM simulation model that was used to cover a broad range of traffic conditions. Mathematical models to estimate the equivalencies were developed. The passenger car equivalent for single unit trucks vary from 1.00 to 1.37, and for combination trucks 1.00–2.18 depending on traffic volume and truck percentage. The passenger car equivalents are highly correlated with traffic volume and, to some degree, with percentage of heavy vehicles. Although the PCE of 1.5 recommended in the 1985 HCM seems to be more reasonable than the 2.0 recommended in the 1994 and 1997 HCM, both overestimate the impact of single unit trucks. For combination trucks, the 1997 HCM overestimates the capacity reduction effects of the trucks in most cases.  相似文献   

13.
张文标  李华明 《西部交通科技》2010,(12):112-115,154
文章从崇左市非法营运微型车辆的实际情况入手,阐述了发展农村客运的基本原则,提出了将非法营运微型车辆纳入行业管理的具体措施,并针对微型车辆纳入行业管理的扶持政策,探讨了加强农村微型客运车辆营运管理的对策。  相似文献   

14.
This paper compares and assesses fuel consumption models, cost functions, and solution methods, as they all have an influence on the resulting profile and associated fuel savings of an eco-cruise control system for passenger vehicles. An eco-cruise control system uses road topographical data obtained from a high-resolution digital map to control the vehicle velocity to optimize its fuel consumption. The optimal velocity profile is the result of an optimal control problem.  相似文献   

15.
This study develops a car‐following model in which heavy vehicle behaviour is predicted separately from passenger car. Heavy vehicles have different characteristics and manoeuvrability compared with passenger cars. These differences could create problems in freeway operations and safety under congested traffic conditions (level of service E and F) particularly when there is high proportion of heavy vehicles. With increasing numbers of heavy vehicles in the traffic stream, model estimates of the traffic flow could be degrades because existing car‐following models do not differentiate between these vehicles and passenger cars. This study highlighted some of the differences in car‐following behaviour of heavy vehicle and passenger drivers and developed a model considering heavy vehicles. In this model, the local linear model tree approach was used to incorporate human perceptual imperfections into a car‐following model. Three different real world data sets from a stretch of freeway in USA were used in this study. Two of them were used for the training and testing of the model, and one of them was used for evaluation purpose. The performance of the model was compared with a number of existing car‐following models. The results showed that the model, which considers the heavy vehicle type, could predict car‐following behaviour of drivers better than the existing models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In order to account for variations in traffic composition during traffic analysis, passenger car equivalent (PCE) factors are used to convert flow rates of various vehicle classes into flow rates in terms of passenger car units (PCUs). Earlier studies have developed various methods to estimate PCE values but only a few of them are based on uninterrupted traffic flow, particularly for flow regimes with heterogeneous traffic where differential (lower) speed limits are imposed on commercial vehicles. This paper proposes a lane-harmonisation approach, which leverages on the high variation in traffic composition across the lanes, to estimate PCE factors for urban expressways. Multiple linear regression is used and the PCE factors obtained for motorcycles, light goods vehicles, and heavy goods vehicles are 0.65, 1.53, and 2.75, respectively. The estimated capacity flow rate after the application of the obtained PCE factors is around 2200 PCUs per hour per lane.  相似文献   

17.
Commercial passenger cars are a possible early market segment for plug-in electric vehicles (PEVs). Compared to privately owned vehicles, the commercial vehicle segment is characterized by higher mileage and a higher share of vehicle sales in Germany. To this point, there are only few studies which analyze the commercial passenger car sector and arrive at contradictory results due to insufficient driving profile data with an observation period of only one day. Here, we calculate the market potential of PEVs for the German commercial passenger car sector by determining the technical and economical potential for PEVs in 2020 from multi-day driving profiles. We find that commercial vehicles are better suited for PEVs than private ones since they show higher average annual mileage and drive more regularly. About 87% of the analyzed three-week vehicle profiles can technically be fulfilled by battery electric vehicles (BEVs) with an electric driving range of about 110 km while plug-in hybrid electric vehicles (PHEVs) with an electric range of 40 km could obtain an electric driving share of 60% on average. In moderate energy price scenarios, PEVs can reach a market share of 2–4% in the German commercial passenger car sales by 2020 and especially the large commercial branches (Trade, Manufacturing, Administrative services and Other services) are important. However, our analysis shows a high sensitivity of results to energy and battery prices as well as electric consumptions.  相似文献   

18.
Electric Freight Vehicles (EFVs) are a promising and increasingly popular alternative to conventional trucks in urban pickup/delivery operations. A key concerned research topic is to develop trip-based Tank-to-Wheel (TTW) analyses/models for EFVs energy consumption: notably, there are just a few studies in this area. Leveraging an earlier research on passenger electric vehicles, this paper aims at filling this gap by proposing a microscopic backward highly-resolved power-based EFVs energy consumption model (EFVs-ECM). The model is estimated and validated against real-world data, collected on a fleet of five EFVs in the city centre of Rome, for a total of 144 observed trips between subsequent pickup/delivery stops. Different model specifications are tested and contrasted, with promising results, in line with previous findings on electric passenger vehicles.  相似文献   

19.
"说起来重要,干起来次要,忙起来不要.这是我在两年前调研过程中听到的一个有关节能工作的顺口溜.近两年,节能减排在我国宣传力度很大,成为热门词汇,但落实到具体工作中,依然需要一个有效的抓手."交通部公路科学研究院汽车运输研究中心副主任蔡凤田直言.  相似文献   

20.
This paper presents a real-time signal control system that optimizes signal settings based on minimization of person delay on arterials. The system’s underlying mixed integer linear program minimizes person delay by explicitly accounting for the passenger occupancy of autos and transit vehicles. This way it can provide signal priority to transit vehicles in an efficient way even when they travel in conflicting directions. Furthermore, it recognizes the importance of schedule adherence for reliable transit operations and accounts for it by assigning an additional weighting factor on transit delays. This introduces another criterion for resolving the issue of assigning priority to conflicting transit routes. At the same time, the system maintains auto vehicle progression by introducing the appropriate delays associated with interruptions of platoons. In addition to the fact that it utilizes readily available technologies to obtain the inputs for the optimization, the system’s feasibility in real-world settings is enhanced by its low computation time. The proposed signal control system is tested on a four-intersection segment of San Pablo Avenue arterial located in Berkeley, California. The findings show the system’s capability to outperform pretimed (i.e., fixed-time) optimal signal settings by reducing total person delay. They have also demonstrated its success in reducing bus person delay by efficiently providing priority to transit vehicles even when they travel in conflicting directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号