首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
横风下车辆-轨道耦合动力学性能   总被引:2,自引:0,他引:2  
应用多体系统动力学理论,建立了车辆-轨道耦合动力学模型,利用新型显式积分法求解动力学方程组,利用赫兹非线性弹性接触理论计算轮轨法向力,利用沈氏理论计算轮轨蠕滑力,编写了车辆-轨道耦合动力学计算程序,研究了轨道结构对高速列车动力学性能的影响,分析了不同横风环境下高速列车动力学性能和列车姿态。研究结果表明:当列车运行速度为...  相似文献   

2.
为了探究列车通过时钢轨振动的基本参数和敏感区域,基于多体动力学软件GENSYS和有限元软件ABAQUS,分别建立车辆-轨道动力学模型和轨道-下部基础有限元模型.以动力学模型计算得到的轮轨力为激励,输入轨道-下部基础有限元模型,计算分析车速、轨道不平顺和钢轨支承方式等因素对钢轨加速度的影响.研究结果表明:钢轨加速度从轨头到轨底逐渐减小,轨枕上方轨头加速度明显大于轨枕之间.钢轨加速度对车速最为敏感,车速从200 km/h增加到350 km/h时,无砟轨道轨头加速度从1.476 km/s2增加到2.980 km/s2.连续支承式无砟轨道,钢轨加速度小于传统离散支承式无砟轨道.加速度传感器建议安装在轨头外侧,传感器的采集频率、量程应考虑列车速度、轨道不平顺等影响.   相似文献   

3.
为探明我国某地铁线路弹性短轨枕轨道曲线钢轨短波长波磨萌生原因,采用现场试验和数值仿真方法对其开展了研究. 首先,通过现场试验确定钢轨波磨波长与轨道动态特性对应关系;其次,利用车辆-轨道耦合动力学模型计算轮轨接触参量,通过力锤敲击法获得现场轨道导纳特性;最后,基于轮轨接触参量和轨道导纳结果,建立钢轨波磨频域线性分析的数值模型,模拟弹性短轨枕轨道频域下曲线钢轨磨损率特征,分析了弹性短轨枕轨道萌生特定波长波磨原因. 研究结果表明:地铁弹性短轨枕轨道钢轨波磨主要出现在半径小于等于800 m曲线段,低轨波磨程度更为显著,波长为50~160 mm,通过频率为140~280 Hz;轨道在160~210 Hz频率范围的模态振型表现为钢轨和轨枕一起相对轨道板垂向弯曲振动,在250~300 Hz频率范围的表现为钢轨和轨枕垂向反向振动,波磨通过频率与该轨道的160~300 Hz共振频率相近. 弹性短轨枕轨道特定波长波磨萌生主要与其轨道垂向固有特性相关,其波磨特征为频率固定型,波磨波长随车辆运行速度变化而变化.   相似文献   

4.
将列车、轨道和桥梁视为3个子结构,基于虚功原理分别推导了三者的动力耦合方程。各子方程按对号入座的方式组装成列车-轨道-桥梁耦合矩阵,其中轨道和桥梁子系统之间采用离散的弹簧-阻尼连接。由于轨下结构的破坏出现轨下支承失效时,计算模型应将轨道下端与桥梁相应连接的弹簧-阻尼去除,进而修正原始组装的刚度矩阵和阻尼矩阵。针对轨下支承失效问题,应用该方法分析了轨道和桥梁动力响应的变化规律。结果表明:轨下支承失效改变了连续的轨道支承刚度,导致车辆通过失效区域时的轮轨接触力剧烈变化;只考虑轨道的动力不平顺时,轨下基础支承缺陷对桥梁的位移响应影响较小,但会加剧桥梁的加速度响应;轨下支承失效的范围越大,轮轨接触力和桥梁的加速度越大;对于轨道的位移和加速度,两者会随轨下支承失效破坏区域的扩大和列车走行速度的提升而显著增加。  相似文献   

5.
轨道不平顺与车轨动力响应之间的关系分析   总被引:1,自引:0,他引:1  
从时域和频域两个方面来研究轨道不平顺与车轨动力响应之间的关系.首先,利用轨道不平顺和轮轨动力学模型来计算轮轨间的动力荷载,加载到轨道有限元模型上得到一定运量下的道床变形和轨道不平顺分布;其次,利用傅立叶变换分别得到了一定运量后轨道不平顺的里程-功率谱、平均功率谱及其拟合谱,分析了不同波长不平顺同道床沉降之间的相关性,并同现场数据相对照.再次,结合现场轨检车的测力轮对数据,包括轨道不平顺、轮载和车体振动加速度,分别从时域和频域两个方面对三者之间的相关性进行分析,并分析了轨道不平顺状态对车轨动力响应的影响程度;最后,认为道床沉降主要影响的是轨道长波不平顺,而对短波不平顺则影响不大,而且从时域和频域来看,轨道不平顺的分布与车体振动加速度的分布相类似,而与轮载分布不同,而且波长较长的轨道不平顺引起车体的振动,它是影响车体振动和车辆运行平稳性的主要因素.  相似文献   

6.
为解决长大列车与连续长弹性轨道的同步仿真问题,以列车通过曲线轨道为例,采用重载列车-轨道耦合动力学模型,分析了压钩力作用下轨道结构与30 t轴重列车的动态特性,提出了长大重载列车与轨道动态相互作用仿真时模型的简化求解方法.该方法将庞大的列车/轨道耦合振动系统以有限数目的三维车辆模型代替,并考虑其轨下基础结构弹性,从而极大缩减系统运动自由度.研究结果表明:列车可简化为单质点车辆模型和三维车辆模型混合的短编组列车,当模型中只包含一个三维车辆模型,且其前、后车辆均以单质点模拟时,计算结果偏低;列车承受2 200 kN压钩力并通过400 m半径曲线线路时,货车最大轮轨横向力和垂向力较多节三维货车编组模型的计算结果分别低估了24%和4%,钢轨横向、垂向位移则被低估了20%和8%;端部车辆采用单质点模型、中部采用三维车辆模型的车辆数至少为3时,才能较为准确地反映中间目标车辆处轮轨作用力和其下部轨道结构的动态特性.   相似文献   

7.
车辆-轨道耦合动力学在轨道下沉研究中的应用   总被引:1,自引:0,他引:1  
将车辆-轨道耦合振动模型和轨道累积下沉计算模型相结合,以轨道结构动力学响应参量和轨面高低不平顺状态变化作为两者间的联结纽带,从车辆-轨道耦合动力学角度研究了轨道的下沉变形特性.研究结果表明,随着轨道动荷载重复作用次数的增加,轨道下沉量逐渐累积;轨面初始不平顺对轨道下沉变化影响较大;受轨道累积下沉的影响,轮轨力、轨道结构响应加大.  相似文献   

8.
车辆-轨道系统耦合高频振动的研究   总被引:3,自引:0,他引:3  
车辆-轨道垂向耦合振动是车辆-轨道耦合动力学主要研究课题.建立了车辆-轨道垂向耦合Timoshenko梁高频振动模型,运用快速积分方法编制仿真程序,对扁疤激励情况下的轮轨垂向高频振动进行系统仿真与分析,并与Eu ler梁模型仿真结果进行比较.结果表明,车辆速度与车轮扁疤的长度对轮轨系统振动有很大的影响;在高频情况下,进行振动与噪声的研究时,建议使用Timoshenko梁模型.  相似文献   

9.
车辆-轨道垂向耦合振动是车辆-轨道耦合动力学主要研究课题.建立了车辆-轨道垂向耦合Timoshenko梁高频振动模型,运用快速积分方法编制仿真程序,对扁疤激励情况下的轮轨垂向高频振动进行系统仿真与分析,并与Euler梁模型仿真结果进行比较.结果表明,车辆速度与车轮扁疤的长度对轮轨系统振动有很大的影响;在高频情况下,进行振动与噪声的研究时,建议使用Timoshenko梁模型.  相似文献   

10.
连续支承条件下轨道位移波的动力特性分析   总被引:1,自引:0,他引:1  
建立了列车与连续支承轨道耦合振动的动力学模型,通过计算模拟了高速列车作用下所出现的轨道位移波现象。分析了轨面不平顺波长、轨道质量、刚度、阻尼等参数对轨道临界速度及位移波的影响。  相似文献   

11.
魏军  雷晓燕 《轨道交通》2009,(11):67-71
建立列车一轨道连续弹性双层梁平面模型,模拟地铁列车运行时引起的轨道结构振动,采用快速傅里叶变换法并结合Matlab软件编制程序,求出作用在隧道基底的荷载值,在此基础上,建立“隧道一土层”三维有限元模型,计算并分析了不同列车速度、不同隧道埋深等工况组合下地铁列车引起的大地振动传播规律。  相似文献   

12.
利用大型有限元商业软件ABAQUS建立了车辆-齿轨铁路导入装置耦合动力学有限元模型;仿真了齿轨车辆通过齿轨铁路导入装置的过程,分析了车辆与齿轨铁路导入装置的动态相互作用;考虑不同参数的影响,研究了齿轨铁路导入装置振动响应、结构应力、动态接触力等动态特性响应规律.研究结果表明:随着支撑弹簧预紧力的增大,齿轮转速能更快达到...  相似文献   

13.
磁浮列车单铁悬浮车桥耦合振动分析   总被引:1,自引:1,他引:0  
为研究单铁悬浮车桥耦合振动,将悬浮控制系统、车辆结构、弹性轨道梁及桥梁安装系统作为整体系统,建立整体系统的磁浮列车的悬浮控制-弹性桥梁-机械结构垂向耦合振动模型,以不同频率的外力激扰模拟磁浮列车不同的速度下对桥梁的作用,分析了不同梁型在整体系统耦合条件下的跨中挠度与振动加速度的变化。研究结果表明:单铁悬浮稳定后,简支梁跨中挠度约为两跨连续梁悬浮处挠度的2.5倍;以200km.h-1车速通过桥梁时其挠度略小于400km.h-1车速通过工况,但前者再次达到稳定状态所需时间约为后者的1/3;车辆以相同速度通过桥梁时,连续梁悬浮处跨中挠度约为简支梁的40%,且前者振动加速度小于后者;仿真过程中桥梁安装临界刚度范围为(5.5~6.5)×107 N.m-1;两跨连续梁动力学性能较简支梁更为优秀。  相似文献   

14.
客车车身骨架动态特性分析   总被引:1,自引:1,他引:0  
以某客车为例,建立了该客车车身骨架的有限元模型.对整车模型进行了模态分析和谐响应分析,结果表明:在车身的第十三阶振型至第十六阶振型中,车身结构模型的中后段变形较大,尤其是发动机底架后段变形较大,当外界激励频率接近固有频率时,会发生共振;当外界激励频率在50,91 Hz时,车身骨架结构模型中后端和尾部振动的幅值较大,该激...  相似文献   

15.
基于柔性轨道研究了随机不平顺下磁浮车辆的动力学特性, 在将轨道受力分解为分段链式结构的基础上, 提出了一种磁浮车辆垂向悬浮稳定性分析方法, 定义了不同悬浮力作用于各自悬浮点时柔性轨道的振动固有频率和模态矩阵; 建立了轨道分段链式结构的离散形式和轨道结构的运动方程, 采用虚拟激励法将轨道不平顺产生的随机激励转化为系统输入激励, 并将轨道随机高低不平顺作为振动激励源进行车轨振动控制; 在不同反馈控制参数下采用电压反馈双环PID控制器数值仿真车辆的悬浮状态, 并分析了轨道随机不平顺激励下反馈控制参数对磁浮系统稳定性的影响。研究结果表明: 当磁浮车辆速度为50~80 km·h-1, 位移反馈参数、速度反馈参数和电流反馈参数分别为140 000、50、500时, 车辆可以从起始间隙16 mm快速定位到平衡位置间隙9 mm, 在2.2 s时即可稳定悬浮, 系统的超调量和稳态误差分别为1.50和0.13 mm, 且系统振动频率趋近于0;当位移反馈参数、速度反馈参数和电流反馈参数分别为15 000、50、400时, 磁浮车辆在轨道随机不平顺作用下的悬浮稳定性变差, 系统在9 s左右逐渐趋于稳定, 但仍旧在平衡位置上下浮动, 且系统振动频率和振动幅值分别为7 Hz和0.5 mm; 当磁浮车辆的速度超出50~80 km·h-1时, 第1组反馈控制参数不再适用, 磁浮系统在1.7 s左右发散, 车辆失稳, 表明在不同车辆速度和反馈控制参数的作用下, 轨道随机不平顺能显著影响磁浮车辆的悬浮稳定性。   相似文献   

16.
为准确评估某新型全自动智能轨道巡检车的动力学性能,开展了轨道巡检车动力学数值仿真;轮轨接触采用非椭圆多点接触Kik-Piotrowski算法模拟,车辆系统建模过程中考虑悬挂力元非线性与轮轨接触几何非线性特性等因素,同时考虑车载设备参振影响;针对车轮踏面表面包裹高硬度聚氨酯的特殊结构,利用有限元软件ABAQUS建立了轮轨局部接触模型,采用Mooney-Rivlin橡胶模型模拟了聚氨酯特殊性质,计算了轮轨等效接触刚度;根据有限元计算结果修正了Kik-Piotrowski算法中的相关参数;基于Craig-Bampton模态综合法和多体动力学软件UM建立了车辆-轨道刚柔耦合模型;为验证仿真模型的准确性,开展了实车动力学试验;重点分析了直线和300 m小半径曲线,运行速度10~30 km·h-1工况下巡检车的振动响应。研究结果表明:车辆正常运行时,中间视觉模块垂向最大加速度大于左侧视觉模块垂向最大加速度,横向最大加速度小于左侧视觉模块横向最大加速度,车架最大加速度大于视觉模块最大加速度;车架中部易产生垂向弯曲变形,和视觉模块安装位置有胶垫减振有关;轨道巡检车在直线和300 m小半径区间运行性能整体良好,其中车辆在300 m小半径曲线段内30 km·h-1运行时,轮重减载率最大可达0.92,车架部位振动响应较大,为保证车载设备的安全性和避免车辆脱轨的风险,建议曲线段内检测速度控制在20 km·h-1左右。   相似文献   

17.
为探明城市轨道交通高架钢轨波磨地段振动噪声对沿线环境的影响,以某城市轨道交通高架钢轨波磨地段为研究对象,开展了列车以不同速度通过时的振动与噪声现场测试;基于测试结果分析了车速对城市轨道交通高架振动与噪声的影响,研究了城市轨道交通高架噪声的空间分布特性,解释了城市轨道交通高架钢轨波磨地段振动与噪声峰值产生的原因。研究结果表明:当列车分别以20、40、60、80、100和110 km·h-1的速度通过城市轨道交通高架钢轨波磨地段时,距线路中心线7.5 m、高于轨面1.2 m处的声压时程峰值分别约为0.6、0.9、1.3、1.9、2.3和3.3 Pa;轨面以上区域主要受轮轨噪声的影响,而梁体下方区域则主要受桥梁结构噪声的影响;轮轨噪声与车速之间存在着很强的线性相关性,而桥梁结构噪声与车速之间的线性相关性则略低,车速每增大10 km·h-1,轮轨噪声和桥梁结构噪声分别约增大1.7和1.1 dB;不同车速下城市轨道交通高架噪声随距离的衰减规律基本一致,测点与线路中心线的距离每增大1倍,测得的噪声约减小4.33 dB;钢轨波磨对城市轨道交通高架轮轨噪声的影响较为显著,钢轨波磨的波长决定了列车以不同速度过桥时钢轨振动加速度的峰值频率,进而影响轮轨噪声的峰值频率;城市轨道交通高架结构噪声的峰值频率主要与其自身的振动特性有关,与车速和钢轨波磨的关系并不大。   相似文献   

18.
在不间断行车情况下, 采用超高压水射流法对桥上CRTSⅡ型板式轨道底座板后浇带进行修复; 建立了CRTSⅡ型板式轨道结构静力计算模型, 分析了底座板后浇带不同脱空长度对钢轨、轨道板垂向位移与轨道板拉应力的影响; 建立了车辆-轨道耦合动力计算模型, 分析了底座板后浇带完全脱空长度为1.0 m时, 正常行车对轨道结构、行车安全与舒适性的影响。计算结果表明: 在1.5倍静轮载作用下, 随着后浇带脱空长度增大, 钢轨与轨道板垂向位移随之增大, 当底座板后浇带完全脱空长度为1.0 m时, 钢轨和轨道板的垂向位移均增大了0.03 mm, 说明完全脱空对其垂向位移影响较小; 后浇带脱空长度分别为0.7、0.8、0.9、1.0 m时, 轨道板的最大拉应力分别为0.96、1.12、1.18、1.22 MPa, 后浇带完全脱空时轨道板的最大拉应力小于其抗拉强度设计值1.96 MPa, 轨道板不会开裂; 列车运行速度为300 km·h-1, 后浇带完全脱空长度为1.0 m时, 钢轨和轨道板的最大垂向位移分别为0.91、0.32 mm, 均小于《高速铁路工程动态验收技术规范》 (TB 10761—2013) 中钢轨和轨道板垂向位移的基准值1.5、0.4 mm, 说明后浇带脱空后正常行车对轨道结构不会造成较大的影响; 后浇带完全脱空时, 轨道板垂向加速度约为正常时的3倍, 说明正常行车将会增大下部基础的振动强度。静、动力分析结果表明, 采用超高压水射流法修复底座板后浇带可允许列车以正常速度通行。   相似文献   

19.
计算模型分为两个部分,列车荷载通过多体动力学软件SIMPACK求得.然后,以有限元软件ANSYS为平台,建立了轨道-隧道-大地三维有限元模型.通过谐响应稳态扫频技术,从频域角度分析定点谐荷载下钢弹簧浮置板轨道引起的大地振动;通过瞬态分析,从时域分析列车荷载下引起的大地振动.结论表明:从频域角度来看,钢弹簧浮置板在接近自身固有频率处会引发地面共振,但影响范围不大;对于中高频有着很好的减振效果.从时域的角度来看,钢弹簧浮置板对应的地表振动远小于整体道床,转频域后其轨道振动分布可按谐响应计算结果解释.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号