首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 140 毫秒
1.
为研究城市轨道交通高架线路敷设阻尼钢轨前后列车通过时段噪声变化规律,以敷设了阻尼钢轨的广州某高架线路为研究对象,通过对高架线路敷设阻尼钢轨前后轨道旁、距行车轨道中心线7.5和30 m处测点进行现场噪声试验,分别从时域统计、频谱和插入损失等方面分析了高架线路改造全过程,包括换轨前、换轨后、刚敷设阻尼钢轨及敷设阻尼钢轨运营半年后列车通过时段噪声变化规律。分析结果表明:换轨和敷设阻尼钢轨作为源头上的降噪措施具有一定的降噪效果,噪声源强处2种措施分别降噪1.1、2.9 dB(A),敷设阻尼钢轨能降低钢轨Pinned-Pinned振动辐射产生的噪声;换轨前高架线路列车通过噪声能量主要集中在100~3 000 Hz,分别在100~125 Hz和2 000 Hz附近出现第1、2个峰值,换轨后、刚敷设阻尼钢轨及敷设阻尼钢轨运营半年后的列车通过噪声能量主要集中在500~2 000 Hz,峰值频率出现在800 Hz附近;高架线路整个施工改造过程中60 Hz以下低频噪声变化较小,60 Hz附近的频率为轮轨系统的固有频率,高架线路改造并未使轮轨系统固有特性发生较大改变;敷设阻尼钢轨运营半年后相比刚敷设阻尼钢轨时,在距轨道中心线7.5和30 m处,1 000 Hz以上高频噪声变化较小,桥梁局部结构振动产生的辐射噪声(100~300 Hz)出现了一定的增大。   相似文献   

2.
针对列车通过城市轨道交通高架时引起的桥梁-声屏障系统结构噪声问题,在某市域铁路箱梁段分别选取无声屏障和直立式声屏障地段,开展噪声现场测试;通过对比无声屏障和直立式声屏障地段的测试结果,分析了箱梁-声屏障系统结构噪声的频谱特性;基于有限元-边界元法,建立了箱梁-声屏障系统振动声辐射数值计算模型,研究了箱梁-声屏障系统结构噪声的空间分布规律,探讨了车速和声屏障高度对箱梁-声屏障系统结构噪声的影响。研究结果表明:当列车以约93 km·h-1的速度通过时,直立式声屏障对高频轮轨噪声起到了很好的降噪作用,但会使低频结构噪声增大;声屏障结构噪声的影响主要集中于160 Hz以下的低频段,箱梁-声屏障系统结构噪声的峰值出现在63 Hz左右;箱梁-声屏障系统结构噪声呈现出近场随距离衰减较快,远场随距离衰减越来越慢的趋势,箱梁正上方和正下方的结构噪声均超过96 dB,距离桥梁中心线120 m处的结构噪声衰减至72 dB;声屏障结构噪声对于梁侧声场的影响较大,与无声屏障地段相比,设置了高度为3.15 m的直立式声屏障之后,梁侧结构噪声增大了2~5 dB;当车速由93 km·h-1增大到120 km·h-1时,箱梁-声屏障系统结构噪声辐射在梁侧最大增加7 dB以上;当声屏障高度由3.15 m增大至6.3 m时,箱梁-声屏障系统结构噪声辐射在梁侧最大增加3 dB以上。   相似文献   

3.
城市轨道交通高架一般采用预应力混凝土简支梁,其截面形式不但直接影响桥梁振动及其结构声辐射,还间接影响轮轨噪声的传播. 为给低噪声轨道交通的高架桥梁截面选型提供依据,本文采用功率流方法计算轮轨滚动激励引起的轨、桥空间平均振动均方速度,结合声有限元-无限元方法分析钢轨噪声和桥梁结构噪声的产生与传播,对比研究了某U型梁、单箱单室梁及双箱双室梁的振动及其声辐射的差异. 结果表明:桥梁截面形式对钢轨振动影响很小,但明显影响钢轨噪声辐射;截面形式对桥梁振动及结构噪声的影响均很大. 就钢轨噪声而言,U型梁相比箱形梁小1~3 dB(A);但在桥梁结构噪声方面,单箱单室梁较U型梁小2~10 dB(A),双箱双室梁较单箱单室梁可再减小2~6 dB(A).   相似文献   

4.
为探究小半径曲线钢轨波磨与车内振动噪声的关系,以高铁站区线路中出现的钢轨波磨为对象,开展了实车试验与轨面平直度现场测试;采用同步压缩小波变换提取了车厢内部振动与噪声信号的时频特征,并引入全局小波功率谱和小波能量比对信号进行量化分析;建立了波磨严重程度与车厢内振动噪声水平的关联关系,对比了车体与走行部构件之间动力响应的差异,探讨了波磨所在曲线半径对车内振动噪声的影响。研究结果表明:在小半径曲线地段,车厢内振动与噪声信号的优势频率为500~550 Hz,与钢轨波磨引起的轮轨冲击频率一致,且该频段的能量在波磨严重区段愈加显著;轴箱与转向架构架振动信号在500~550 Hz频带也存在能量峰值,而轴箱振动信号中出现的330、1 046 Hz等峰值频率被一系悬挂有效过滤,使得构架振动响应中未见此频率成分;在车厢内采集的各项信号中,车体垂向振动响应与钢轨波磨沿线路里程的分布特征最为相关,而车内噪声、纵/横向振动、侧滚运动的相关性次之,摇头运动的相关性最低;与直线和大半径曲线相比,小半径曲线区段的车体振动与噪声水平受钢轨波磨的影响更为显著。  相似文献   

5.
为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容。分析结果表明:车轮异常磨耗会导致舒适性下降,合理的车轮镟修能有效降低车轮非圆化和车辆系统关键部件的振动,降低车内振动噪声,增加列车运行稳定性、安全性和平稳性;合适的轮对定位刚度和抗蛇行减振器的刚度和阻尼有利于提高列车蛇行运动稳定性和转向架运动临界速度;钢轨波磨严重时会导致钢轨扣件松动,缩短车辆构架和钢轨的使用寿命;通过合理的钢轨廓型打磨可消除曲线波磨,改善轮轨关系;行波效应对车辆安全性影响很大,与相同激励下的各项参数相比,车速为350 km·h-1、行波速度为300 m·s-1时的脱轨系数、轮重减载率和轮轨横向力都有所降低;横风作用下受电弓气动抬升力增大,影响接触网安全,增大弓头阻尼和弓头刚度可改善弓网受流特性。   相似文献   

6.
基于摩擦自激理论的单侧钢轨波磨机理分析   总被引:1,自引:1,他引:0       下载免费PDF全文
肖宏  陈鑫  赵越 《西南交通大学学报》2022,57(1):83-89, 119
为了分析重载铁路曲线地段钢轨波磨的产生原因,基于摩擦自激振动理论建立小半径曲线轮轨三维接触精细化模型,讨论了不同扣件刚度、摩擦系数、超高对轮轨系统不稳定摩擦自激振动的影响,揭示了单侧钢轨波磨产生的内在原因,并通过轮轨瞬态动力学方法,分析了单侧钢轨波磨的传递及演化过程. 结果表明:超高和实际运行速度的不匹配是曲线内股钢轨首先产生波磨的主要原因;内股钢轨波磨产生后会导致轮轨系统不稳定,并将振动传递至外股钢轨,从而诱发小半径曲线地段两侧钢轨均产生波磨;适当地提高扣件垂横向刚度、控制轮轨摩擦系数在0.4以下,能够有效地降低轮轨系统发生不稳定振动的趋势,从而抑制波磨发展.    相似文献   

7.
采用钢轨波磨测量仪测量了钢轨波磨特征,采用加速度和位移传感器测量了钢轨打磨前后车辆和轨道零部件的振动加速度,分析了钢轨波磨对车辆和轨道零部件振动的影响,建立了车辆-轨道耦合动力学模型,研究了钢轨波磨对轮轨相互作用力的影响,确定了钢轨打磨限值。研究结果表明:钢轨波磨主波长为30~40mm,次波长为16mm;钢轨轨头和弹条在650~800Hz的振动和轴箱在670~800Hz的振动与30~40mm波长对应的车辆通过振动行为一致,因此,短波钢轨波磨导致地铁车辆和轨道零部件振动过大,是车辆一系钢弹簧和轨道扣件弹条疲劳断裂的主要原因;钢轨打磨可以有效解决疲劳断裂问题,打磨前钢轨轨头、弹条、轨枕和道床振动加速度均方根分别为243.4、309.3、17.1、2.6m·s-2,打磨后振动加速度均方根下降为51.5、8.8、1.5、0.5m·s-2;轮轨垂向力和横向力均对钢轨波磨波长非常敏感,当钢轨波磨波深为0.1mm时,35、80mm波长对应的轮轨垂向力分别为307、109kN,横向力分别为56、25kN;当车辆运营速度为90~120km·h-1时,根据轮重减载率限值标准,35mm波长钢轨波磨波深为0.05~0.08mm,根据轮轨垂向力限值标准,35mm波长钢轨波磨波深为0.03~0.06mm,建议30~40mm短波钢轨波磨波深达到0.05mm时进行打磨处理。  相似文献   

8.
以跨度为32m的简支高架箱梁为研究对象,利用有限元法与间接边界元法相结合,分析了德国低干扰轨道谱激励下不同参数对双块式无砟轨道高架箱梁结构噪声的影响.结果表明:扣件刚度对钢轨的振动位移和箱梁底板的振动加速度影响较大,对高架箱梁结构噪声的影响主要在32Hz以下;行车速度对钢轨的振动加速度和箱梁底板的振动位移影响较大,对高架桥梁结构噪声的影响比较强烈,而且距离线路中心线距离越远的场点,其所受车速影响越大.  相似文献   

9.
陈光雄 《西南交通大学学报》2022,57(5):1017-1023, 1054
钢轨波磨会降低乘坐舒适性,增大轨道结构伤损,甚至影响列车的安全运行. 为判断钢轨波磨预测模型的准确性,首先,基于钢轨波磨现场调研数据,统计地铁线路和干线铁路的钢轨波磨发生率;其次,针对现有钢轨波磨预测模型验证方法的局限性,同时结合钢轨波磨发生的规律性,提出预测模型验证的3种基本工况:线路曲线半径≤350 m时的内轨波磨和外轨波磨、曲线半径 ≥ 650 m时的非科隆蛋扣件曲线线路或者直线线路钢轨的波磨,并进行实例验证;最后,根据基于轮轨蠕滑力饱和情况,提出了一种快速预测钢轨波磨发生的新方法. 研究结果表明:现有的波磨预测模型验证工况缺乏一般性,大部分没有考虑线路曲线半径的影响,忽视了从新轨到波磨出现阶段的钢轨振动演变规律,造成通过验证的波磨预测模型预测准确率偏低;所提出的波磨快速预测方法准确率可达到85.00%.   相似文献   

10.
为了解轨道车辆运营中普遍存在的钢轨波磨问题,分析了钢轨波磨的形成机理,阐述了钢轨波磨对车辆-轨道系统动力学性能的影响,综述了常见的钢轨波磨检测、监测与抑制方法,并展望了钢轨波磨的研究方向。研究结果表明:车辆-轨道系统耦合振动、轮轨反馈振动、轮轨自激振动和轮轨接触振动是形成钢轨波磨的主因,车辆-轨道结构、线路运营条件、轮轨材料、钢轨型面和车轮踏面轮廓等多方面因素相互耦合作用亦会引起钢轨波磨;重载、高速铁路和地铁钢轨波磨会影响车辆-轨道系统动力学性能和车辆与轨道零部件寿命,也会影响扣件、钢轨、轨枕、轨道板(道砟)和轴箱等零部件的振动特性,各零部件的阻尼、刚度等物理参数与运行条件不匹配时也会造成钢轨波磨,列车长时间运行在钢轨波磨路段时会导致车辆-轨道结构产生强烈共振,造成严重疲劳损伤,影响行车安全;检测与监测是研究和发现钢轨波磨的重要辅助手段,抑制钢轨波磨主要通过改善轮轨接触关系、钢轨打磨、提高钢轨表面材料硬度、添加相关摩擦调节剂和轮轨润滑剂、使用钢轨吸振器技术、优化轮轨系统结构以及调整列车运营规定等措施来实现;目前,钢轨打磨仍是消除和减轻钢轨波磨最直接、最有效和最经济的措施,应提升并改善钢轨打磨技术。   相似文献   

11.
针对运行列车引起的轨道交通桥梁结构噪声问题,总结了国内外轨道交通桥梁结构噪声的辐射特性、预测方法、产生机理、控制措施及工程应用等方面的研究成果,展望了未来的研究重点和发展方向。研究结果表明:轨道交通桥梁结构噪声主要集中于200 Hz以下的低频段,峰值一般出现在40~100 Hz;如何使用更先进的声源识别技术将桥梁结构噪声从综合噪声中分离出来,是准确分析桥梁结构噪声频谱特性和空间分布特性的关键;现有的桥梁结构噪声预测方法包括声学边界元法、统计能量分析等,声学边界元法的计算效率较低,统计能量分析主要用于钢桥噪声预测,发展大跨度混凝土桥梁结构噪声预测方法是当务之急;桥梁结构噪声峰值主要与桥梁结构的中高频局部振动特性和轮轨系统输入到桥梁结构的振动能量有关,桥梁的中高频局部振动特性对声辐射特性的影响机理尚未形成统一认识;目前常用的桥梁结构噪声控制措施有轨道减振措施和桥梁减振措施2类,桥梁减振措施对结构噪声的控制效果一般,轨道减振措施虽然能够有效降低桥梁结构噪声辐射,但同时可能引起轮轨噪声与道床二次结构噪声的增大,建议在保证经济性的条件下,综合运用各种控制措施,以取得最优的降噪效果。   相似文献   

12.
基于统计能量分析(SEA)和半无限流体方法,建立6节编组的B型列车车外噪声预测仿真模型;通过试验提取车体SEA模型的振动激励和轮轨噪声激励,施加给车体并计算分析了车外噪声特性;以中国某城市轨道交通列车通过噪声试验对模型进行验证,并探讨了列车各板单元和轮轨噪声声源对车外场点声压的贡献量。研究结果表明:统计能量分析和半无限流体方法能够准确预测车外噪声,计算效率为常规方法的14.1倍;车速为60 km·h-1时,车外7.5和30.0 m处噪声显著频段为400~1 600 Hz,声压级随频率升高先增大后缓慢下降,其变化趋势和轮轨噪声变化趋势一致,最大幅值频率集中在800 Hz处,最大值分别为64.88、61.75 dB(A);车外噪声贡献量由大到小依次为轮轨噪声、车窗、侧墙、车门、底板、顶板、端墙;车体振动辐射噪声在低频段的贡献较大,在中心频率为20~100 Hz时,车外噪声主要来源为车窗、侧墙,其贡献率分别达到21.2%和19.2%;在中心频率为100~500 Hz时,车体各板及轮轨噪声贡献率差异较小;在中心频率为500~5 000 Hz时,车体各板块的贡献率呈缓慢下降趋势,轮轨噪声的贡献率随频率升高逐渐增加,在2 000~5 000 Hz的1/3倍频带内达到60%以上。   相似文献   

13.
高架轨道结构振动特性分析   总被引:1,自引:0,他引:1  
目前高架轨道是城市轨道交通的主要结构型式之一,为分析其结构振动特性,通过建立高架轨道垂向振动解析梁模型和有限元模型,采用动柔度法计算高架桥速度导纳和轨道速度导纳,并分别考虑桥梁支座刚度、桥梁截面形状对高架桥振动的影响以及高架桥基础和扣件刚度对轨道结构振动的影响。结果表明,桥梁支座刚度和截面形状在低频段对高架桥的振动有较大的影响,在高频段影响较小;高架桥结构对轨道的振动在20 Hz以下有明显的影响,在20 Hz以上基本没有影响;提高扣件刚度有利于减小轨道的竖向振动,但同时增大了轨道的固有频率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号