首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
为了研究整体道床轨道扣件刚度对钢轨垂向振动声功率特性的影响,建立了平面半轨道模型,利用谱元法计算了钢轨导纳,建立了轨道周期子结构模型,利用谱传递矩阵法计算了轨道衰减率;结合钢轨导纳和轨道衰减率计算结果,得到了单位简谐点激励作用下的钢轨声功率级,分析了扣件刚度对钢轨相对声功率级的影响. 研究结果表明:在单位简谐点激励作用下,中低频范围内的钢轨声功率级随着频率的增大而提高,在1/3倍频程中心频率800 Hz处,钢轨声功率级出现峰值;钢轨声功率级随着扣件刚度的减小而增大,但主要影响的频率范围为400 Hz以下;扣件刚度减小越多,钢轨声功率级增大越显著;扣件刚度的减小使得钢轨声功率级在钢轨弯曲共振频率处增加量最大,这是因为在该频率下钢轨导纳幅值增加量和轨道衰减率减少量均较大.   相似文献   

2.
以跨度为32m的简支高架箱梁为研究对象,利用有限元法与间接边界元法相结合,分析了德国低干扰轨道谱激励下不同参数对双块式无砟轨道高架箱梁结构噪声的影响.结果表明:扣件刚度对钢轨的振动位移和箱梁底板的振动加速度影响较大,对高架箱梁结构噪声的影响主要在32Hz以下;行车速度对钢轨的振动加速度和箱梁底板的振动位移影响较大,对高架桥梁结构噪声的影响比较强烈,而且距离线路中心线距离越远的场点,其所受车速影响越大.  相似文献   

3.
为揭示高速铁路桥梁结构振动产生与传递机理,分别采用数值方法与现场实测研究时速300 km/h高速列车诱发高架箱梁结构振动特性。首先,建立高架简支箱梁三维有限元动力学模型,分析列车以300 km/h速度通过时,高架箱梁结构振动特性及传递规律。然后,选择沪昆高铁高安—南昌区间某高架轨道,对高速列车引起的桥梁结构振动进行现场测试,并将有限元计算结果与实测结果进行对比。结果表明:有限元分析与现场实测结果在20~400 Hz吻合良好。桥梁结构振动的优势频率为31.5~125 Hz,峰值频率为31.5~63 Hz,在16 Hz处有一个明显的波谷;当频率大于200 Hz时,桥梁结构加速度振级急剧下降,可以针对31.5~63 Hz频率进行桥梁结构减振设计。桥梁顶板最大加速度振级为88.59~100.48 dB,对应的峰值频率为31.5 Hz和40 Hz;桥梁底板最大加速度振级为82.96~94.29 dB,对应的峰值频率为31.5 Hz和63 Hz,箱梁底板振动对桥梁结构振动的贡献最大。  相似文献   

4.
基于π定理和量纲分析法,推导了某32 m高架轨道箱梁结构缩尺模型与原型物理量之间的相似关系,并通过建立动力仿真模型进行计算,验证了相似关系的准确性;以该相似关系指导设计,并通过合理选材,制作了几何相似比为10∶1的轨道箱梁结构缩尺试验模型;通过激振试验获取了缩尺试验模型的模态频率、振型和加速度响应,并与有限元仿真结果对比,验证了缩尺试验模型的有效性;在此基础上利用该缩尺试验模型研究了轨道箱梁结构的振动传递特性。研究结果表明:高架轨道箱梁缩尺模型与原型结构前10阶模态频率误差均小于1%,且由缩尺模型计算结果反演的加速度响应曲线与原型结果趋势一致,模型与原型之间相似关系推导正确;缩尺试验模型实测模态频率与有限元仿真结果的误差均在8.8%以内,各阶模态振型吻合,且实测加速度响应随时间变化趋势与有限元仿真结果一致,制作的高架轨道箱梁结构缩尺试验模型有效;当振动在轨道结构中传递时,扣件和橡胶层对1 000 Hz以上的高频振动具有明显的衰减作用;当振动由箱梁顶板向底板传递时,顶板加速度导纳最大,翼板次之,其次是腹板,底板加速度导纳最小;设计制作的高架轨道箱梁结构缩尺试验模型能够反映原型振动响应的一般传递规律,可用于轨道箱梁结构振动传递特性与控制关键技术研究。   相似文献   

5.
以高速铁路WJ-7B型扣件胶垫为研究对象,通过动态力学性能试验测试了扣件胶垫在不同温度下的动力性能;结合温频等效原理、Williams-Landel-Ferry方程和高阶分数导数FVMP模型表征了扣件胶垫的黏弹性力学特性;将该模型代入建立的桥梁振动与结构噪声预测有限元-边界元模型,并与Kelvin-Vogit模型对比来分析扣件胶垫黏弹性对箱梁振动和结构噪声的影响。研究结果表明:扣件胶垫黏弹性表现为动参数的温频变特性,刚度与频率正相关,与温度负相关,阻尼与频率和温度均负相关,阻尼在1~100 Hz内变化明显,在100 Hz以上变化较小;扣件动参数测试值与高阶分数导数FVMP模型拟合值吻合良好,采用高阶分数导数FVMP模型可以准确描述扣件在宽温宽频下的动态黏弹性力学行为;仅考虑扣件胶垫频变特性时,桥梁在25~63 Hz振动加剧,在80~200 Hz振动减弱,在峰值频率63 Hz处顶板、腹板和底板的加速度振级分别增大5.62、0.91和2.94 dB,桥梁横桥向各板垂向近场点和梁底下方靠近地面处声辐射明显增大;同时考虑扣件胶垫温变与频变特性时,随着温度的降低,桥梁在31.5~50.0 Hz振动不断减小,在63~200 Hz振动不断增大,桥梁横桥向在顶板斜上方、腹板和底板垂向近场点和梁底下方靠近地面处声辐射减小,温度从20 ℃降到-20 ℃时,总体声压级最大降低了2 dB左右;忽略扣件胶垫黏弹性会导致桥梁振动和结构噪声预测产生偏差,仿真分析时应考虑扣件胶垫的黏弹性,以提高预测的准确性。   相似文献   

6.
用功率流理论从能量的角度研究轨道结构的振动特性,它兼顾了力和速度的相位关系,比传统的以力、位移、加速度和速度等单个指标来衡量振动特性更具有综合性。建立了桥梁一承轨台轨道有限元模型,对其进行谐响应分析,从而得到输入钢轨和承轨台的总功率流,进而评价其振动特性。改变扣件的刚度和阻尼,研究扣件参数的改变对于钢轨和承轨台输入总功率流的影响。  相似文献   

7.
为精确计算列车动荷载作用下软土地铁盾构隧道频域振动响应,考虑地基动刚度随应变频响的非线性变化,建立了车辆/轨道/隧道/软土地基的垂向耦合动力学模型,研究了不同轨道平顺等级下软土动刚度随应变频响非线性变化对地铁盾构隧道随机振动的影响规律.研究结果表明:随着轨道平顺性的恶化,地基动刚度随应变频响非线性的变化将引起地铁盾构隧道各频段内的振动加速度级出现明显的非均匀变化;轨道不平顺恶化后,软土地基动刚度的非线性将改变地铁盾构隧道频域振动幅值大小,且其对应频率会出现约有0.2 Hz的偏移,致使地铁盾构隧道频域振动能量出现重分布现象.   相似文献   

8.
为分析列车通过我国第一条修建在软土路基上的沪宁高铁时,引发的振动特性,以及与邻近的京沪铁路既有线路基段的相互影响,在沪宁线新孟河段进行了现场振动测试.对获得的振动加速度信号进行处理得到速度时程曲线,从加速度时程、加速度级、速度峰值PPV和1/3倍频程4个方面,分析了高铁线和既有线的振动特性及振动对邻近线的影响.结果表明:沪宁高速铁路高架桥并行京沪铁路既有线路基段列车运行引发的振动,以竖向振动为主;既有线不同机车型号和客货类型对其本身钢轨及轨枕的加速度振级影响很大,但是远处测点的加速度振级值趋向一致;扣件系统和桥墩支座是衰减振动的关键环节.对比现有的国内外规范标准发现,沪宁高铁和京沪铁路既有线路基段列车运行引发的振动对邻近线的结构不会产生明显影响;沪宁高铁过车引发的振动主要集中在31.5 Hz和63 Hz频段,京沪铁路既有线路基段,过车时振动主频随着不同机车类型存在差异.  相似文献   

9.
铁路高架结构线路噪声预测   总被引:1,自引:0,他引:1  
列车在高架铁路运行时辐射的噪声与路基线路存在较大差异,特别是当线路采用了声屏障后,高架结构辐射的噪声对沿线环境的影响将显现.文中应用动力学基本理论建立了车.桥线路的耦合模型,获得了列车运行时轮轨之间的作用力,将其作为高架结构的统计能量分析的输入,研究了高架结构振动与声辐射,并应用高架结构的振动测试,进行了模型验证.应用该模型研究了200km/h速度下列车运行引起的高架结构噪声辐射,分析了轨道垫板的刚度变化对高架结构声辐射的影响,得出了优化轨道垫板的刚度可以提高高架结构声屏障的总体降噪效果的结论.  相似文献   

10.
为了科学测试与评价浮置板轨道减振垫刚度,为浮置板轨道静动力学特性分析提供准确的计算参数,通过有限元仿真计算减振垫测试样品的荷载施加范围,应用配备温度箱的力学试验机并结合温频等效原理测试了减振垫静刚度以及5.0、10.0、20.0、30.0 Hz频率下的动刚度;在得到减振垫准确力学参数的基础上,对比分析了采用传统4.0 Hz参数与真实频变参数对浮置板轨道固有频率以及导纳特性的影响. 研究结果表明:浮置板轨道变形、静力学分析以及底座板弯曲变形应分别采用3种不同荷载范围下的静刚度;浮置板轨道调谐频率,安全性以及减振效果应分别采用3种不同预压条件下的动刚度;无(有)车载条件下聚氨酯减振垫4.0 Hz参数得到的浮置板固有频率为27.0 Hz (15.5 Hz),而考虑频变刚度的真实固有频率为31.5 Hz (18.3 Hz);采用4.0 Hz减振垫参数分析浮置板振动传递特性将会低估浮置板轨道固有频率,高估隔振频带及隔振效果;当采用浮置板轨道真实一阶固有频率对应的减振垫参数,其导纳计算结果与考虑减振垫真实频变特性基本一致.   相似文献   

11.
为探明城市轨道交通高架钢轨波磨地段振动噪声对沿线环境的影响,以某城市轨道交通高架钢轨波磨地段为研究对象,开展了列车以不同速度通过时的振动与噪声现场测试;基于测试结果分析了车速对城市轨道交通高架振动与噪声的影响,研究了城市轨道交通高架噪声的空间分布特性,解释了城市轨道交通高架钢轨波磨地段振动与噪声峰值产生的原因。研究结果表明:当列车分别以20、40、60、80、100和110 km·h-1的速度通过城市轨道交通高架钢轨波磨地段时,距线路中心线7.5 m、高于轨面1.2 m处的声压时程峰值分别约为0.6、0.9、1.3、1.9、2.3和3.3 Pa;轨面以上区域主要受轮轨噪声的影响,而梁体下方区域则主要受桥梁结构噪声的影响;轮轨噪声与车速之间存在着很强的线性相关性,而桥梁结构噪声与车速之间的线性相关性则略低,车速每增大10 km·h-1,轮轨噪声和桥梁结构噪声分别约增大1.7和1.1 dB;不同车速下城市轨道交通高架噪声随距离的衰减规律基本一致,测点与线路中心线的距离每增大1倍,测得的噪声约减小4.33 dB;钢轨波磨对城市轨道交通高架轮轨噪声的影响较为显著,钢轨波磨的波长决定了列车以不同速度过桥时钢轨振动加速度的峰值频率,进而影响轮轨噪声的峰值频率;城市轨道交通高架结构噪声的峰值频率主要与其自身的振动特性有关,与车速和钢轨波磨的关系并不大。   相似文献   

12.
考虑桩周土体的三维波动效应,分析成层黏性材料阻尼土中桩顶受任意轴向激振力作用时变阻抗桩的纵向振动特性,求得桩顶频域响应解析解、复刚度和速度导纳,分析了底部土层模量变化和桩身阻抗变化对桩纵向振动特性的影响。  相似文献   

13.
考虑桩周土体的三维波动效应,分析成层黏性材料阻尼土中桩顶受任意轴向激振力作用时变阻抗桩的纵向振动特性,求得桩顶频域响应解析解、复刚度和速度导纳,分析了底部土层模量变化和桩身阻抗变化对桩纵向振动特性的影响。  相似文献   

14.
抑制轮轨摩擦自激振动的扣件结构多参数拟合研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究扣件结构参数对轮轨摩擦自激振动的影响,基于轮轨摩擦耦合自激振动的观点建立了小半径曲线轨道整体道床支承的轮轨系统有限元模型;通过现场测试和数值仿真验证了轮轨摩擦自激振动模型,进而基于该模型研究了扣件结构中各参数对轮轨摩擦自激振动的影响;综合考虑多因素之间的相互影响,采用最小二乘法得到了预测轮轨摩擦自激振动发生可能性的扣件结构多参数拟合方程. 研究结果表明:在整体道床支承的小半径曲线轨道上,轮轨间饱和蠕滑力引起的轮轨摩擦自激振动是诱导该区间钢轨波磨的关键因素,轮轨系统的摩擦自激振动主要发生在300 Hz和320 Hz;根据扣件结构的多参数拟合方程,在适当范围内,扣件的垂向阻尼为1000 N?s/m,扣件间距为1.0 m组合时,可以降低小半径曲线轨道上轮轨系统摩擦自激振动发生的可能性,从而降低钢轨波磨发生的可能性.   相似文献   

15.
为了探究高速铁路制动区间的典型钢轨波磨现象,基于轮轨摩擦自激振动诱导钢轨波磨的观点展开了研究,通过武广高速铁路制动区段的现场调研,掌握该区段的波磨特征并采集相应的轨道不平顺;基于轮轨摩擦自激振动诱导钢轨波磨的观点分别建立制动区段高速列车的动/拖车轮对-轨道-制动系统的有限元模型,并利用复特征值法进行动/拖车轮轨系统的摩擦自激振动分析,比较动/拖车轮轨系统在制动和非制动工况下系统发生摩擦自激振动的可能性,以及在制动工况下动车轮轨和拖车轮轨系统的摩擦自激振动情况;使用控制变量法研究了制动系统摩擦系数和扣件垂向刚度对动/拖车轮轨系统摩擦自激振动的影响规律.研究结果表明:制动工况更容易引起系统的摩擦自激振动;拖车轮轨系统更容易引起系统摩擦自激振动;控制制动装置摩擦系数约为0.30,扣件垂向刚度约为50 MN/m时能一定程度降低轮轨系统发生摩擦自激振动的可能性,进而抑制钢轨波磨的产生.  相似文献   

16.
高速铁路桥上无缝线路断轨力计算模型   总被引:1,自引:1,他引:1  
在吸收前人研究成果的基础上,采用实体单元模拟桥梁及桥梁墩台,采用空间梁单元模拟钢轨及轨枕,采用弹簧单元模拟钢轨、轨枕、桥梁与墩台之间的连接,建立了断轨三维有限元空间力学模型。以秦沈客运专线10跨32 m简支双线整孔箱形梁桥为例,对其进行断缝值影响因素分析。研究结果表明:对于多跨简支梁桥,断缝与梁温度变化幅度、断缝位置、支座摩擦阻力关系不大;断缝值与扣件纵向阻力、钢轨温度变化幅度、桥墩纵向刚度、钢轨类型关系比较密切;断缝值及采用的力学计算模型也有一定的关系,相比传统计算模型,空间力学模型计算结果偏小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号