首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
路表弯沉并不能完全反映土基顶面压应变,在路面结构设计中必需要重视土基顶面压应变的状态。鉴于此,采用典型路面结构,分析各结构层参数的变化对土基顶面压应变和土基内部压应变的影响,以为沥青路面结构设计提供参考。  相似文献   

2.
为了研究水泥混凝土路面模量变化对水泥路面设计影响分析,在考虑水泥路面各个结构层模量变化前提下,分析土基回弹模量变化对水泥路面路表弯沉影响、土基回弹模量变化对土基顶面弯沉影响。提高土基模量减小土基顶面弯沉和路表弯沉,对土基上一层结构层进行适当稳定处理。  相似文献   

3.
以沥青路面路基顶面压应变、路表弯沉为研究指标,使用Bisar3.0软件分析了级配碎石基层厚度与模量及土基模量变化对这两种指标的影响,可供同行参考。  相似文献   

4.
采用基于多层弹性层状体系理论的路面结构分析软件BISAR3.0,对我国典型的半刚性路面结构的路表和路基顶面弯沉、面层和基层层底拉应力及路基顶压应变进行计算分析。结果表明,土基模量对半刚性基层层底拉应力较面层层底拉应力影响较大,起主要控制作用;并且随着土基模量的增加,路面结构层的力学性都能得到明显改善。  相似文献   

5.
为了研究基层与土基的结构参数对沥青混凝土路面的力学响应,采用用正交试验方法分析了影响路表弯沉和路基顶压应变各结构参数的敏感性,并采用极差分析法对各因素敏感性进行了评价。分析结果表明,土基模量是影响路表弯沉的最显著影响因素,对路基顶应变影响最显著的是基层模量,良好的基层与底基层的层间结合状态能够提高沥青路面的使用性能。  相似文献   

6.
选取两款用于沥青路面结构分析的典型轴对称非线性有限元软件MICH-PAVE和ILLI-PAVE,从应用层面对二者开展横向比较,并以级配碎石柔性基层沥青路面结构为算例,分析二者关键力学响应结果的差异性.结果 表明:两款软件在前处理、计算求解、后处理等方面均存在差异,需根据实际情况合理选用;二者均可考虑粒料和细粒土回弹模量对应力状态的依赖性;两款软件计算所得路表弯沉、沥青面层底径向应变及土基顶面竖向应变的分布形态相似,MICH-PAVE所获结果较ILLI-PAVE总体偏大,二者所获沥青面层底径向应变、土基顶面竖向应变的吻合程度高于路表弯沉.  相似文献   

7.
汽车轴重与路面破坏的关系   总被引:1,自引:0,他引:1  
综合了国内我有关轴重换算的研究资料,分别以路表弯沉等效,基层底部拉应力等效,土基顶面压应变等效及主辙等效为原则,对轴载换算公式中的轴荷指数进行了计算比较,在此基础上提出了合理的轴荷指数。并借助于已建立的轴重分布模型,分析了不同的轴荷指数对路面使用年限的影响。  相似文献   

8.
为了提高传统路面嵌锁块尺寸与嵌锁块竖向嵌锁能力,开发了大尺寸企口连接嵌锁块,分析了其受力特性。以有限元方法建立了嵌锁块路面整体模型,以弹簧单元模拟嵌锁块间传荷能力,分析了嵌锁块尺寸、嵌锁块传荷能力、碎石基层厚度与路基强度对路表弯沉和路基顶面竖向压应变的影响。以路基顶面永久应变为控制指标,建立了路基顶面应变水平与标准累计轴次的关系。计算结果表明:在相同地基和基层条件下,嵌锁块尺寸由30cm×20cm增大到50cm×30cm时,路表弯沉可减小25%~30%,路基顶面压应变可减小25%~45%。当接缝弹簧弹性系数由102 N·m-1增加至108 N·m-1时,路表弯沉降低50%~55%,路基顶面压应变降低65%~75%。可见,采用较大尺寸的嵌锁块与加强嵌锁块的传荷能力对提升路面性能有显著作用,路面设计时应依据道路的交通水平查图确定路基顶面的压应变水平,据此确定合理的基层厚度和嵌锁块尺寸,使路基顶面竖向压应变满足要求。  相似文献   

9.
文章采用美国KENPAVE软件对比分析了2种典型级配碎石基层路面结构在不同厚度条件下的路表弯沉、沥青层底拉应变、土基顶面压应变等力学指标,并采用灰关联法分析了各力学指标对结构影响的显著程度。研究表明:倒装路面结构形式优于柔性基层路面结构形式,且碎石夹层厚度为15cm左右时,结构形式最优。  相似文献   

10.
距离荷载中心较远位置处的路表变形响应只受到土基的影响,故利用路表远端弯沉盆参数反算土基模量可以避开初始模量值的选择和反算结果唯一性等问题。运用ABAQUS有限元程序计算了半刚性基层沥青路面常见的160组结构的路表弯沉盆,组建了弯沉盆与土基模量之间的数据库,并基于此数据库建立了由路表弯沉盆参数与土基反算回弹模量的回归模型...  相似文献   

11.
为使对路面结构的分析和设计更加符合实际情况,需要考虑季节性的变化.针对某一柔性基层沥青路面结构进行分析,通过室内试验确定了各层沥青混合料的动态模量主曲线和时间温度换算因子,并确定了路面结构内温度场和动态模量的分布和变化,进而计算了路面结构关键响应随时间的变化情况.分析了路表弯沉、沥青层底拉应变和土基顶面压应变季节性波动情况,并在满足工程精度要求下,确定了响应的关键位置.  相似文献   

12.
在不同荷载条件下变化沥青路面结构层的模量,找出沥青路面在超载作用下随结构参数变化路表弯沉、面层拉应力、基层拉应力、底基层拉应力和土基顶面压应变等力学性能及路用性能的变化规律,针对超载作用下的沥青路面要合理控制各结构层之间的模量关系,同时提高土基模量.为超载作用下沥青路面设计、施工提供理论依据.  相似文献   

13.
在不同荷载条件下变化沥青路面结构层的模量,找出沥青路面在超载作用下随结构参数变化路表弯沉、面层拉应力、基层拉应力、底基层拉应力和土基顶面压应变等力学性能及路用性能的变化规律,针对超载作用下的沥青路面要合理控制各结构层之间的模量关系,同时提高土基模量.为超载作用下沥青路面设计、施工提供理论依据.  相似文献   

14.
考虑碎石基层横观各向同性的沥青路面结构设计   总被引:3,自引:0,他引:3  
为了分析碎石材料横观各向同性特性对沥青路面结构设计的影响,评价其使用特性,运用状态空间理论,基于横观各向同性层状弹性体系理论解,使用路面结构分析程序ANISOLAY-ER,对基于土基和碎石类材料横观各向同性特性的路面结构设计进行了分析,给出了5种典型沥青路面结构三层体系设计诺谟图,并对一碎石基层沥青路面结构厚度进行了程序化设计。结果表明:在考虑沥青路面关键性设计指标的情况下,对于碎石基层沥青路面结构,沥青层底部拉应变和路表弯沉都普遍比容许值小50%左右,其控制设计指标主要为路基顶部的压应变,车辙为其主要破坏模式。  相似文献   

15.
采用4层的典型路面结构,分析了各结构层参数(厚度与模量)的变化对土基顶面压应变和土基内部压应变影响。分析表明:基层厚度对土基顶面压应变影响最大,当基层厚度〈30cm时效果更为显著,但是当h2〉50cm时,通过基层厚度的增加来减小土基顶面压应变的效果已不太明显;底基层模量E3对路基顶面压应变的影响较基层E2、面层E1大的多。土基承受的压应变较小,传递深度也较浅,有效工作区的范围大概在1m之内。  相似文献   

16.
开展了柔性基层沥青路面与半刚性基层沥青路面结构力学响应及疲劳寿命的有限元分析,并对实体工程进行了连续3 a的跟踪观测。结果表明:相比于半刚性基层沥青路面,柔性基层沥青路面路表弯沉、沥青层底拉应变、土基顶面压应变更大,早期病害以坑槽和修补为主,通车3 a才出现横向裂缝。  相似文献   

17.
长寿命沥青路面设计指标研究   总被引:8,自引:1,他引:7  
为了研究长寿命路面设计方法,采用SHELL、AI等设计方法对国外提出的沥青层底拉应变与土基顶面压应变标准进行了验证,根据国外典型长寿命路面结构组合进行应变指标计算与统计分析,并基于中国路面设计参数对长寿命路面设计指标进行修正。经过统计分析,验证了国外提出的2个长寿命路面设计指标的可行性,并提出了适用于中国长寿命路面结构设计的控制指标:沥青层底拉应变不大于120×10-6,土基顶面压应变不大于280×10-6,并对已有试验路结构进行了力学分析。分析结果表明:试验路的沥青层底拉应变均小于120×10-6,土基顶面压应变均小于280×10-6,这表明试验路段满足长寿命路面指标。  相似文献   

18.
为了分析超载对半刚性基层沥青路面的力学响应及疲劳寿命的影响,通过三维有限元软件ANSYS,建立非均布荷载作用下的三维有限元模型,对比分析单轴10 t、15 t、20 t、25 t四个轴重下的力学响应及疲劳寿命结果.四个不同轴载作用下的结果表明:随着荷载的增加,路表弯沉、沥青层底压应力、基层及底基层底拉应力、土基顶面压应...  相似文献   

19.
路基路面各层的材料性质、参数等均对弯沉的大小产生很大影响.通过分析土基模量及沥青路面各层参数对路表弯沉的影响,结果表明土基模量是影响路表弯沉的最重要因素,它的大小决定了其他参数对路表弯沉的影响程度.  相似文献   

20.
基于半刚性基层路面典型结构建立三维力学模型,综合考虑常载、常载+刹车、超载和超载+刹车4种组合荷载,采用双轮最不利矩形接触面形式,并运用特征路径分析方式,数值模拟了路表及深层内力学响应规律。结果表明:刹车对路表弯沉和路基顶面压应变影响较小,超载影响显著;刹车主要对面层弯拉应力影响较大,并使上面层出现较大拉应力,对基层基本无影响,超载使基层弯拉应力增大显著;超载和刹车对剪应力峰值增大明显,特别是刹车使剪应力增大极其显著;在不同荷载作用下,从路表沿深度方向力学响应峰值位置会发生变化,在进行沥青路面结构设计和力学分析时应取相应位置处的值作为力学控制指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号