首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 170 毫秒
1.
《公路》2015,(12)
为研究软弱破碎围岩浅埋连拱隧道支护体系力学特性,以某连拱隧道为依托,采用钢弦式传感器,对围岩压力、锚杆轴力、钢支撑内力、二衬受力及中墙内力等进行系统测试与分析。结果表明,拱部两侧拱腰位置围岩压力较大,呈"猫耳朵"分布。受地质和施工因素等的影响,拱部围岩压力实测值与公路隧道设计细则计算值相差较大。中墙底部及两侧边墙底部基底压力大。正洞锚杆轴力量值很小,建议取消正洞锚杆。侧导洞锚杆作用明显,根据围岩情况可以保留。钢拱架受力最大位置在拱腰处,拱顶处钢拱架承受拉应力,其他部位为压应力,部分拱架受力接近屈服,型钢拱架作用十分明显。中墙顶部钢筋计受拉,其余位置受压,中墙上部受力较下部敏感。左右线先后应力释放对中墙有一定的"纠偏效应",但中墙受力始终处于偏压状态。  相似文献   

2.
软弱破碎地层围岩稳定性差,与支护间接触压力大,支护结构应力状态复杂,因此支护结构的支护性能是满足隧道施工及运营期安全与稳定的重要保障。高强钢筋格栅拱架是以高强钢筋为主材的一种格栅拱架形式,具有支护强度高,与混凝土黏结性好,重量轻等诸多优点,但其在公路隧道软弱破碎围岩中的支护性能仍有待考量。为此,结合圆管弹性应变理论推导出的支护刚度计算公式,对不同拱架结构进行等截面换算,得出高强钢筋格栅拱架和型钢拱架的支护特征曲线;采用有限元数值计算方法将钢拱架与混凝土分部建模,进一步分析2种支护拱架的力学特性和变形特征;最后在现场开展对比试验,通过监测沉降收敛位移、围岩压力、拱架应力,分析施工中高强钢筋格栅拱架的支护性能。理论验算和数值分析结果表明,高强钢筋格栅拱架与I20b型钢拱架的极限承载力基本相同,但高强钢筋格栅拱架支护刚度相较I20b型钢拱架弱,I20b型钢拱架对变形控制能力更强;现场对比试验结果显示,2种支护拱架产生的收敛变形相差不多,且围岩接触压力分布规律基本相同,高强钢筋格栅相较I20b型钢拱架的承载应力更高,但远小于材料本身屈服强度;此外,现场施工表明采用高强钢筋格栅拱架能有效提升人工支护作业效率,对于特长公路隧道快速施工具有更好的应用价值。综合分析,高强钢筋格栅拱架在软弱破碎地层能够提供与I20b型钢拱架相近的支护抗力,适用作特长公路隧道软弱破碎围岩的初期支护拱架结构。  相似文献   

3.
隧道钢拱架支护结构受力特征的数值模拟分析   总被引:1,自引:0,他引:1  
钢拱架是隧道支护中的主要支护形式之一,不同间距下其支护效果也不相同,笔者采用FLAC3D软件建立隧道三维模型,模拟了钢拱架在隧道中的受力特征,分析了钢拱架间距对围岩变形、塑性区及钢拱架自身受力特征的影响.分析结果表明:钢拱架为主要的受力结构,拱腰钢拱架轴力最大,拱脚弯矩和剪力最大,对控制围岩变形效果明显,当钢拱架间距在...  相似文献   

4.
小导管注浆法在隧道塌方治理中的应用   总被引:1,自引:0,他引:1  
分析了西南某隧道塌方的原因,阐述了该隧道塌方处理方案。根据"加固后方、封闭岩面、稳定塌体"的塌方处理原则,采用小间距型钢拱架加小导管注浆法等具体方案和技术措施对塌方隧道进行处治。实践证明,加固处治措施是有效的。  相似文献   

5.
以米亚罗3号隧道为依托工程,首先通过现场实测应力监测数据,对米亚罗3号隧道施工期支护结构应力的演变规律进行了分析研究;然后进一步借助数值分析软件,对不同初始水头高度下,米亚罗3号隧道运营期间围岩和衬砌结构的力学特征进行了研究。应力监测结果表明:隧道上台阶开挖后,拱顶和拱肩处的围岩-初支接触压力、钢拱架应力和外水压力迅速增大,约在30~40d后趋于稳定;下台阶开挖后,拱腰处的接触压力、钢拱架应力和外水压力快速增长,约在30~50d后趋于稳定;随着下台阶的开挖,拱肩处的围岩-初支接触压力再度缓慢增长,而钢拱架应力则明显下降;二衬施作后,其内力快速增长,并在20d后趋于稳定。数值模拟结果表明:当初始水头高度增加时,运营期间米亚罗3号隧道的洞周位移、二衬内力和外水压力均成一定比例的增加;隧道变形主要为竖直和水平方向的挤压变形,最大位移发生在拱底;相对于无地下水的情况,地下水的存在会影响衬砌弯矩分布,导致弯矩最大截面从拱顶转移至拱脚;衬砌所受外水压力在拱底处最小,其余部位分布较为均匀;随着初始水头的增大,拱腰和拱脚背后围岩的塑性区范围会明显增加。  相似文献   

6.
黄土隧道在开挖过程中经常发生支护结构破坏或过度变形。依托某黄土隧道,提出一种新型组合结构支护体系(π形拱架),采用理论计算对比了π形拱架与传统工字钢提供的支护反力,结合现场监测和数值模拟分析了不同支护体系下围岩控制效果,优化新型组合结构的构造参数,同时基于正交试验探究了构造参数对围岩支承效果影响显著性大小。结果表明:π形拱架提供的支护反力是型钢钢架的3.14倍,具有强度大、承载力高的优势;建立对比分析模型,较传统支护体系相比,新型支护体系下的拱顶沉降降幅达到53.8%,等效塑性应变减少约64.4%,初期支护最大压应力和拉应力分别减少约35.3%、35.9%;进而建立参数优化模型,通过对围岩竖向位移和塑性区的综合评估,建议拱架壁厚取6 mm,灌浆强度选择C30,翼板长度以200 mm为宜;结合正交试验结果,各因素影响程度由小到大依次为因素B(灌浆强度)<因素A(钢管壁厚)<因素C(翼板长度)。本研究可进一步促进新型拱架在黄土隧道施工支护中的应用。  相似文献   

7.
以回头沟隧道工程为依托,对洞口偏压段进行了监测研究。结果表明:作用在初衬上的围岩压力深埋侧拱肩处最大,二次衬砌拱脚处收到的应力最大,二衬承受围岩应力的比例在21%~52%之间。  相似文献   

8.
介绍用复合纤维布加固简支T梁时,将T梁向上顶起,在预拱状态下贴布,使复合纤维布协助钢筋增大二次受力效应,提高加固效果。  相似文献   

9.
针对杜公岭隧道既有初期支护出现的碳硫硅钙石型硫酸盐侵蚀现象,采用数值计算方法分析了该腐蚀现象对病害处治措施安全性的影响,并通过测试隧道病害处治范围内衬砌结构与围岩的矿物成分确定了衬砌结构优化加固方案的范围。计算结果表明:在既有初支发生硫酸盐侵蚀失去承载能力条件下,仅置换二衬时,二衬结构拱脚、边墙关键位置的安全系数较小(最小1.44)、裂缝宽度较大(最大1.23 mm);采用二衬嵌拱方案时,二衬嵌拱结构拱脚、边墙、拱腰、墙脚等位置的安全系数很小(最小0.14);当二衬结构和初期支护同时置换,且新施作初期支护不出现腐蚀劣化时,新施作二衬结构的安全系数(最小2.23)和裂缝宽度(最大0.14 mm)。衬砌结构和围岩的矿物成分测试结果表明:碳硫硅钙石在既有衬砌结构中已广泛分布或正在侵蚀。依据数值计算与矿物成分测试成果,杜公岭隧道病害处治区段内的二衬与初支全部采用置换为抗硫酸盐混凝土结构,围岩采用锚杆进行加固,对于未设仰拱断面均增设仰拱支护。经施工后检测与长期监测,杜公岭隧道衬砌结构加固方案的处治效果良好。  相似文献   

10.
浅埋偏压连拱隧道中导洞开挖中隔墙浇注后,对靠近山体内侧的右洞先行开挖和支护,再进行靠近山体外侧的左洞的开挖,右洞二衬出现部分地段纵向开裂,同时中隔墙和仰拱随二衬呈环向裂缝。针对该隧道实际情况,分析现有地质和施工条件下该隧道二衬开裂的主要原因,提出了类似条件下合理的连拱隧道施工工序。  相似文献   

11.
隧道衬砌空洞易引发衬砌破坏、渗漏水等工程问题,但因衬砌内部金属(如钢筋、钢拱架)对雷达波的屏蔽作用,会增加雷达剖面的复杂性,进而影响检测效果。依托MATLAB软件平台,采用高阶时域有限差分法分别对400 MHz天线和900 MHz天线时隧道衬砌矩形空洞和三角形空洞进行正演模拟。结果表明:高阶时域有限差分法能高精度模拟雷达波在衬砌中的传播特性,展示衬砌中钢筋、空洞、工字钢的反射波、绕射波的能量、振幅、相位特征;900 MHz天线可分辨出长度在0.3 m及以上的界面,远高于400MHz天线的检测精度,但检测界面相对于真实界面小。  相似文献   

12.
周广平 《隧道建设》2020,40(3):316-325
为解决长大明挖高铁隧道施作衬砌结构时养护不充分、拆模较早等引起的衬砌结构容易裂缝问题,防止衬砌结构在自重应 力作用下对隧道运营期的防水及结构安全造成影响,基于京张高铁东花园长大明挖隧道工程,采用有限元分析和在衬砌结构典型 断面上的拱肩、拱腰不同位置布设钢筋计、混凝土应变计、土压力计、表面应变计,对衬砌结构的内力变形进行现场监测。分析得 出: 衬砌结构容易出现塑性应变的位置是拱腰处大于拱肩处,裂纹均出现在1/2 截面附近的矮边墙以上及起拱线以下位置,且均为 环向裂纹;对于矮边墙以上、起拱线以下的混凝土来说,其降温产生的收缩变形会受到矮边墙钢筋剪力的约束,使其不能发生水平 位移。最后,给出控制衬砌结构受力变形和加快施工进度的建议。  相似文献   

13.
邓方进 《隧道建设》2019,39(Z1):188-193
探地雷达(ground penetrating radar,GPR)在工程检测领域应用广泛,特别是应用于隧道衬砌结构检测。利用时域有限差分方法(finite difference time domain,FDTD)和完全匹配层(perfect match layer,PML)吸收边界条件,采用900 MHz天线,模拟了不同间距、不同深度、不同对应位置的单、双层钢筋混凝土结构,并运用频率-波速域(F-K)波动方程偏移技术分别进行了成像处理。研究表明: 1)有效探测范围内钢筋间距、埋深越大时,干扰信号越少,钢筋的反映越明显; 2)F-K偏移可较好地分辨出单层(上层)钢筋,斜对双层钢筋的分辨率比正对高。  相似文献   

14.
李祥云 《路基工程》2016,(6):207-211
玄真观隧道贯通后,由于高地应力的原因导致隧道局部衬砌开裂变形,变形段衬砌需拆换整治。拆换过程中,对围岩的二次扰动,使隧道周边围岩产生较大的松动圈,地应力反复重新分布,局部应力高度集中,应力积聚值大于围岩极限强度时发生隧道坍塌。坍塌治理中,对坍塌影响段采取了方木垛、工字钢架临时支撑及预初支背后预注浆加固,防止坍塌的继续扩大;对坍塌段采取了机械手喷射混凝土封闭岩面、工字钢架护拱、预留孔道回填混凝土、加强初支及衬砌等技术措施,取得了坍塌处理的预期效果。  相似文献   

15.
以陕西宝汉高速公路连城山隧道(双洞六车道)绿泥石片岩段为例,分析了大跨度软岩公路隧道仰拱病害原因,建立了隧道仰拱的弹性地基曲梁模型,推导了仰拱结构内力、仰拱地基反力等计算公式,分析了原设计仰拱二次衬砌极限承载力和受力规律,评价了原设计仰拱结构安全性;在此基础上,探讨了各仰拱参数对仰拱极限承载力的影响规律及敏感度,计算了参数变更后仰拱二次衬砌的极限承载力,并结合仰拱受力测试,进一步考察了参数变更后仰拱结构安全性。结果表明:隧道墙脚以沉降变形为主,导致仰拱两端承受很大的竖向荷载,而原设计仰拱本身承载力较弱,加上仰拱地基软弱并且受地下水的软化效应和高应力下的蠕变效应影响,是连城山隧道仰拱开裂破坏的主要原因;仰拱最危险截面距离仰拱端部约为半幅仰拱相应圆心角的1/5~1/4处,即位于墙脚附近,与现场观察到的墙脚附近仰拱回填开裂、仰拱与仰拱回填脱离等破坏现象一致;增大仰拱厚度、减小仰拱半径、增大仰拱钢筋直径和减小仰拱钢筋间距均能显著提高仰拱极限承载力,其中减小仰拱钢筋间距的效果相对最为显著;而由于仰拱最危险截面的受压区高度很小,提高混凝土强度等级对于改善仰拱整体安全性并不显著;参数变更后的仰拱二次衬砌采用C35钢筋混凝土,厚度为1 m,半径约为13.4 m,钢筋直径为28 mm,钢筋间距为20 cm,极限承载力可达原设计的3.6倍以上,结构安全性大幅提高;为提高材料利用率,建议仰拱混凝土强度等级采用C30。  相似文献   

16.
蔡唐涛 《路基工程》2016,(3):222-226
依托某停工达6年的高速公路隧道工程,基于复工初衬病害检测,运用ANSYS有限元软件建立适于该隧道初衬病害及缺陷的模型,分别从初衬背后存在空洞、钢拱架锈蚀、喷射混凝土的厚度不足及开裂等缺陷病害对隧道V级围岩段初衬结构的安全影响进行了模拟分析。结果表明:隧道初衬结构中,病害缺陷处存在应力集中情况,初衬结构最大主应力随着各种病害的发展逐渐增大;初衬结构拱顶沉降变形随着钢拱架锈蚀、喷射混凝土的开裂及厚度不足病害缺陷的发展逐渐增加;隧道初衬结构的不同程度病害缺陷对其安全系数的影响呈非线性。应对病害加以治理,确保隧道  相似文献   

17.
为提高铁路双线大断面隧道二次衬砌钢筋保护层控制质量,降低拱顶开裂风险,针对隧道二次衬砌钢筋在大跨度时本身具有向下的沉落变形特点,需对钢筋沉落量进行有效控制。二次衬砌环向主筋受力体系与拱的受力方式相同,以郑万高速铁路隧道二次衬砌结构几何参数、钢筋及垫块布置、钢筋的自重为研究对象,按无铰拱结构受力计算方式,采用经典力学原理、拱的挠度理论、挠度叠加设立方程,对钢筋自重下的预留沉落量进行研究,得到环向主筋越小施工沉落量越大,环向主筋越大施工沉落量越小的规律。通过理论公式计算出各种衬砌类型钢筋施工沉落量,提前进行有效预设,并按施工沉落变形对钢筋进行有效限位支撑,提高钢筋安装的准确性,有效控制了二次衬砌钢筋保护层,满足了设计要求。  相似文献   

18.
何超  张鹏  马保松 《隧道建设》2019,39(1):94-101
为使管幕相邻顶管之间能够形成稳定土拱,防止管幕周围土体发生局部坍塌,需要合理控制管幕顶管间距。针对全断面支护管幕工程,结合管幕支护机制,运用土拱效应理论,对管幕顶部、中部、底部3个特殊位置形成的管间土拱进行分析,建立相应的管间土拱模型,分析土拱的受力情况; 运用土体的极限平衡条件对拱顶和拱脚进行稳定性验算,得出顶管间距的控制式。针对港珠澳大桥拱北隧道管幕工程,结合管幕所在地层的土体参数,对隧道顶管间距进行计算分析,得出拱北隧道顶管间距为0.47 m。与工程顶管间距实际取值(0.35 m)相比,计算值略微偏大,符合工程实际情况,说明建立的管间土拱模型是合理的。  相似文献   

19.
为保证隧道工程质量,利用地质雷达对山岭隧道支护结构的施工质量进行系统的无损检测,并依据地质雷达工作成像原理,结合应用实例得出:地质雷达在山岭隧道衬砌厚度、拱架数量、间距及背后缺陷等检测过程中具有高效便捷、无损准确等特点,可在山岭隧道质检工作中广泛应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号