首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
无竖井单线隧道活塞风影响因素分析   总被引:1,自引:0,他引:1  
采用非恒定流活塞风计算理论,按列车行驶在单线无竖井隧道中的不同位置,分四种情况(列车部分进入隧道,列车全部进入隧道,列车部分驶出隧道,列车全部驶出隧道后活塞风的衰减过程)建立了简化的活塞风分析数学模型.在此基础上,通过MATLAB软件进行数值求解,得到列车经过某区间隧道时的活塞风速度变化情况.分析了列车运行速度、列车长度、列车对隧道的阻塞比以及区间隧道长度对活塞风的影响.本方法可以作为列车以不同速度行驶在各种单线、无竖井隧道内活塞风速度的试用计算工具.  相似文献   

2.
1概述当高速列车正在驶入或驶出隧道时,列车车身在隧道内的长度是个变量,活塞风和空气阻力的计算方法与全部列车在隧道内行驶时是不同的。因此,活塞风和空气阻力应按非恒定流分三种情形进行计算:1.部分列车进隧道,即列车在驶入隧道的过程中列车前段已进隧道而列车后段在隧道外;  相似文献   

3.
随着我国铁路建设的快速发展,隧道列车活塞风的确定具有重要意义.本文从运动列车与隧道气流的功能转换出发,以列车作用段作为活塞风压源,利用流体力学的基本原理、基本方程和湍流半经验理论,分析、探讨了活塞风压力产生的机理,构成类别和列车、隧道长度及表面粗糙特性、阻塞比、行车速度等作用条件对活塞风的影响,提出活塞风压力和活塞风速度的计算方法.以实车的隧道空气动力学试验资料为参照进行对比计算,计算活塞风速度与实测结果较好符合.通过不同隧道长度、不同阻塞比和不同行车速度的系列组合计算,进行无量纲工况的综合分析,得出活塞风变化的一般特性.活塞风的计算方法和特性为活塞风的充分利用提供了重要依据.  相似文献   

4.
广州地铁6号线的隧道通风设计   总被引:2,自引:2,他引:0  
广州地铁6号线穿越老城区,因此隧道通风设计的控制因素较多.通过简化和输入合理的边界条件和参数,运用SES程序对该线路进行计算,针对隧道内温度和风量进行分析.指出在现有配置隧道通风系统的情况下,深埋隧道内近、远期的全线温度满足要求;单端设置活塞风井的"活塞效应"作用较大,隧道区间换气量达到《地铁设计规范》规定,且增设消声器对活塞风道的作用影响不大,设计优化、合理.  相似文献   

5.
以开敞式地铁车站为例,将列车、隧道、站厅层和站台层均简化为长方体并建立车站三维模型;利用流体动力学软件Fluent,采用压力基求解器和SIMPLIC算法,研究活塞风作用下站厅火灾的烟气流动特性,并分析增设迂回风道和竖井对于削弱活塞风影响的效果.结果表明:站厅层空气流场结构在活塞风的作用下将会发生复杂的变化;站厅火灾发生后,在机械排烟、热浮力以及活塞风的共同作用下,站厅烟气分层现象遭到破坏;各楼梯口处气流速率变化剧烈,气流方向多次改变,并导致站厅层烟气被吸入站台层;增设迂回风道和竖井能够有效地削弱活塞风对起火站厅层烟气分层现象的破坏,延缓烟气侵入站台层的时间,减少侵入站台层的烟气量.  相似文献   

6.
针对既有竖井影响下活塞风理论计算研究的不足,基于连续性方程和伯努利方程建立双竖井铁路隧道活塞风非定常流动理论计算模型;将列车在双竖井铁路隧道中行驶的全过程分为4个阶段,分别推导各阶段隧道内活塞风非定常流动的理论计算式;通过模型试验和数值模拟2种方法,验证理论计算式的可靠性并进行修正。结果表明:随着列车与竖井相对位置的变化,隧道内与竖井内的风流关系呈动态变化,若按固定值计算会引起较大误差,而采用数值模拟方法可实现风流动态关系式的反推,达到修正理论计算式的目的;修正后的理论计算式精度较高,总体误差低于10%,适用列车速度范围为0~360 km·h-1;该理论计算式不仅可计算结构类似的铁路或地铁隧道活塞风速,还可推广应用于单竖井或多竖井(3个及以上)隧道。  相似文献   

7.
利用计算流体动力学软件 Star-CD,建立了列车通过隧道时的二维动网格模型,模拟在不同车速下,隧道内活塞风和压力场的动态变化规律,并比较不同外形和运行速度时列车所受到的空气阻力.模拟结果表明:列车通过隧道时的运行速度越大,产生的活塞风风速越大,相对压力越大,列车所受的空气阻力越大;列车通过隧道内某一测量点时,活塞风风速会发生突降,活塞风最大风速在列车尾流中形成;车头到达隧道入口时,最大压力突增,并很快达到最大值,随后逐渐减小;车尾到达隧道入口时,车尾最小压力突降;车身在隧道内时,车尾的最小压力波动较小;流线形列车所受的空气阻力约为钝形列车的0.5~0.7倍.  相似文献   

8.
隧道活塞风模型试验研究   总被引:3,自引:0,他引:3  
随着长及特长单线铁路隧道的大量修建,利用活塞风改善隧道内空气质量,降低隧道通风能耗已成为可能。国内外对于隧道压力波和隧道内列车空气阻力问题进行了较多研究,但对隧道活塞风全面系统性的研究较少。为此,根据相似原理,考虑模型的变态,采用全模型试验方法设计搭建隧道活塞风模型试验台,用于活塞风风速的测试。将试验值与理论计算值、原型转换试验值与理论计算值进行比较,结果表明活塞风速度的符合度较好。由此,取线性比尺为60,以水为工作介质的模型试验用于隧道活塞风研究是可行的。  相似文献   

9.
结合吉珲客运专线隧道建设,选择具有代表性的中、长和特长隧道,在一定隧道进深拱腰位置的二衬表面和二衬背后围岩径向设置测温传感器,连续监测整个冬季隧道内空气和围岩温度变化情况,分析隧道纵向和围岩径向温度梯度变化规律,探究隧道长度、埋深、自然风、列车活塞风等因素对隧道温度场的影响,通过现场试验获得寒区隧道围岩冻结范围,为隧道防排水设施和保温措施的设计以及隧道冻害诊断分析提供理论依据。研究表明,隧道温度场受自然风影响显著,受列车活塞风影响较弱;自迎风一侧隧道口沿隧道轴向进深增加,隧道内空气温度逐渐升高,温度变化梯度与风速密切相关,在背风侧隧道口较短范围内温度逐渐趋近环境温度;隧道围岩温度沿径向总体呈现上升趋势,具体温度梯度变化受隧道埋深、围岩性质和山体内水流影响较大。  相似文献   

10.
地铁列车在隧道内运行时,会产生活塞风,这种空气流动主要沿隧道轴线方向,可视为一维不可压缩流动.通过对地铁单线无竖井隧道的空气动力学特性进行一维理论分析,初步得到了活塞风量和风压的简化计算方法.研究表明,隧道内活塞风速与列车速度成正比,活塞风压与列车速度的平方成正比,可将列车等效为风机,采用“等效风机”特性曲线方程和隧道阻力特性方程共同来确定活塞风量,并且可以将该方法应用到有竖井的单线隧道中.该简化计算方法的提出,为隧道内活塞效应的研究建立了理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号