首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this paper, we propose a new yaw moment control based on fuzzy logic to improve vehicle handling and stability. The advantages of fuzzy methods are their simplicity and their good performance in controlling non-linear systems. The developed controller generates the suitable yaw moment which is obtained from the difference of the brake forces between the front wheels so that the vehicle follows the target values of the yaw rate and the sideslip angle. The simulation results show the effectiveness of the proposed control method when the vehicle is subjected to different cornering steering manoeuvres such as change line and J-turn under different driving conditions (dry road and snow-covered).  相似文献   

2.
There are basically two methods to control yaw moment which is the most efficient way to improve vehicle stability and handling. The first method is indirect yaw moment control, which works based on control of the lateral tire force through steering angle control. It is mainly known as active steering control (ASC). Nowadays, the most practical approach to steering control is active front steering (AFS). The other method is direct yaw moment control (DYC), in which an unequal distribution of longitudinal tire forces (mainly braking forces) produces a compensating external yaw moment. It is well known that the AFS performance is limited in the non-linear vehicle handling region. On the other hand, in spite of a good performance of DYC in both the linear and non-linear vehicle handling regions, continued DYC activation could lead to uncomfortable driving conditions and an increase in the stopping distance in the case of emergency braking. It is recommended that DYC be used only in high-g critical maneuvers. In this paper, an integrated fuzzy/optimal AFS/DYC controller has been designed. The control system includes five individual optimal LQR control strategies; each one, has been designed for a specific driving condition. The strategies can cover low, medium, and high lateral acceleration maneuvers on high-μ or low-μ roads. A fuzzy blending logic also has been utilized to mange each LQR control strategy contribution level in the final control action. The simulation results show the advantages of the proposed control system over the individual AFS or DYC controllers.  相似文献   

3.
《JSAE Review》2002,23(4):473-480
This paper presents a comparison study of the effect of model response on the performance of the model following type combined lateral force and yaw moment control. The combined controls aim to maximize stability limit as well as vehicle responsiveness. In order to realize this aim, two types of model responses are proposed to introduce the required lateral force and yaw moment control. The model responses (a) is the side-slip angle and yaw rate vehicle response of the two degree of freedom vehicle motion (bicycle model). The model responses (b) is an intentional modification from the model responses (a) to the side slip angle converging to zero and first order yaw rate. Three different cases of combining lateral force and yaw moment control have been investigated using the two types of model responses. The effect of model responses is proved by computer simulations of the vehicle response to a single sine wave steering input with braking for the combined control methods proposed. It is found that the influence of the model response has a significant effect on the combined control performance.  相似文献   

4.
针对直接横摆力矩如何实现汽车的稳定性,与其他一些汽车稳定性控制系统进行了比较。概述了国内外采用的一些直接横摆力矩控制策略及力矩分配方法,并介绍了直接横摆力矩控制在实车上的应用,最后分析了直接横摆力矩的发展趋势。  相似文献   

5.
?Vehicle dynamic control (VDC) systems play an important role with regard to vehicle stability and safety when turning. VDC systems prevent vehicles from spinning or slipping when cornering sharply by controlling vehicle yaw moment, which is generated by braking forces. Thus, it is important to control braking forces depending on the driving conditions of the vehicle. The required yaw moment to stabilize a vehicle is calculated through optimal control and a combination of braking forces used to generate the calculated yaw moment. However, braking forces can change due to frictional coefficients being affected by variations in temperature. This can cause vehicles to experience stability problems due an improper yaw moment being applied to the vehicle. In this paper, a brake temperature estimator based on the finite different method (FDM) was proposed with a friction coefficient estimator in order to solve this problem. The developed braking characteristic estimation model was used to develop a VDC cooperative control algorithm using hydraulic braking and the regenerative braking of an in-wheel motor. Performance simulations of the developed cooperative control algorithm were performed through cosimulation with MATLAB/Simulink and CarSim. From the simulation results, it was verified that vehicle stability was ensured despite any changes in the braking characteristics due to brake temperatures.  相似文献   

6.
The stability driving characteristic and the tire wear of 8-axle vehicle with 16-independent driving wheels are discussed in this paper. The lateral stability of 8-axle vehicle can be improved by the direct yaw moment which is generated by the 16 independent driving wheels. The hierarchical controller is designed to determine the required yaw torque and driving force of each wheel. The upper level controller uses feed-forward and feed-backward control theory to obtain the required yaw torque. The fuzzification weight ratio of two control objective is built in the upper level controller to regulate the vehicle yaw and lateral motions. The rule-based yaw moment distribution strategy and the driving force adjustment based on the safety of vehicle are proposed in the lower level controller. The influence of rear steering angle is considered in the distribution of driving force of the wheel. Simulation results of a vehicle double lane change show the stability of 8-axle vehicle under the proposed control algorithm. The wear rate of tire is calculated by the interaction force between the tire and ground. The wear of tire is different from each other for the vehicle with the stability controller or not.  相似文献   

7.
王伟  肖泽艳 《天津汽车》2010,(12):22-26
为提高车辆的横向稳定性,获得良好的操纵性能,利用ADAMS/car和MATLAB/simulink建立了以横摆角速度和质心侧偏角为控制变量的多级PID仿真模型,分别采用了单个车轮制动和单侧车轮制动产生附加横摆力矩的方式.通过蛇形试验验证了ESP控制器的有效性和对比了2种制动方式的控制效果.仿真试验表明:采用该ESP控制器可以很好地保持车辆的稳定性,采用单侧车轮制动产生附加横摆力矩的方式具有更快的控制速度和更好的控制效果.  相似文献   

8.
The Vehicle stability control system is an active safety system designed to prevent accidents from occurring and to stabilize dynamic maneuvers of a vehicle by generating an artificial yaw moment using differential brakes. In this paper, in order to enhance vehicle steerability, lateral stability, and roll stability, each reference yaw rate is designed and combined into a target yaw rate depending on the driving situation. A yaw rate controller is designed to track the target yaw rate based on sliding mode control theory. To generate the total yaw moment required from the proposed yaw rate controller, each brake pressure is properly distributed with effective control wheel decision. Estimators are developed to identify the roll angle and body sideslip angle of a vehicle based on the simplified roll dynamics model and parameter adaptation approach. The performance of the proposed vehicle stability control system and estimation algorithms is verified with simulation results and experimental results.  相似文献   

9.
A novel direct yaw moment controller is developed in this paper. A hierarchical control architecture is adopted in the controller design. In the upper controller, a driver model and a vehicle model are used to obtain the driver's intention and the vehicle states, respectively. The upper controller determines the desired yaw moment by means of sliding mode control. The lower controller distributes differential longitudinal forces according to the desired yaw moment. A nonlinear tyre model, ‘UniTire’, is utilised to develop the novel distribution strategy and the control boundary.  相似文献   

10.
This paper presents an fault-tolerant yaw moment control for a vehicle with steer-by-wire (SBW) and brake-by-wire (BBW) devices. SBWs and BBWs can give active front steering (AFS) and electronic stability control (ESC) functions, respectively. Due to motor-driven devices, actuator and sensor faults are inherent in SBW and BBW, and can cause a critical damage to a vehicle. Simple direct yaw moment control is adopted to design a vehicle stability controller. To cope with actuator failure, weighted pseudo-inverse based control allocation (WPCA) with variable weights is proposed in yaw moment distribution procedure. Simulations on vehicle simulation software, CarSim®, show the proposed method is effective for fail safety.  相似文献   

11.
为了提高四轮独立驱动智能电动汽车在变曲率弯道下的轨迹跟踪精度和横摆稳定性,提出了一种模型预测控制与直接横摆力矩控制协同的综合控制方法。建立了横纵向耦合的车辆动力学模型,采用2阶龙格库塔离散法保证了离散模型的精度,并基于简化的2自由度动力学模型推导了车辆横摆稳定性约束,设计了非线性模型预测控制器;利用直接横摆力矩控制能够改变车辆横摆角速度和航向角的特点,考虑模型预测控制器的预测状态、控制量以及跟踪误差,设计了协同控制规则。仿真结果表明,协同控制方法解决了考虑横摆稳定性约束的模型预测控制器中存在的稳定性约束与控制精度相矛盾的问题,并补偿了模型预测控制器没有可行解时对横摆稳定性的约束,同时提高了智能汽车的轨迹跟踪精度和横摆稳定性。  相似文献   

12.
The brake and steering systems in vehicles are the most effective actuators that directly affect the vehicle dynamics. In general, the brake system affects the longitudinal dynamics and the steering system affects the lateral dynamics; however, their effects are coupled when the vehicle is braking on a non-homogenous surface, such as a split-mu road. The yaw moment compensation of the steering control on a split-mu road is one of the basic functions of integrated or coordinated chassis control systems and has been demonstrated by several chassis suppliers. However, the disturbance yaw moment is generally compensated for using the yaw rate feedback or using wheel brake pressure measurement. Access to the wheel brake pressure through physical sensors is not cost effective; therefore, we modeled the hydraulic brake system to avoid using physical sensors and to estimate the brake pressure. The steering angle controller was designed to mitigate the non-symmetric braking force effect and to stabilize the yaw rate dynamics of the vehicle. An H-infinity design synthesis was used to take the system model and the estimation errors into account, and the designed controller was evaluated using vehicle tests.  相似文献   

13.
疏祥林  李以农 《天津汽车》2006,(3):16-19,23
作为一种先进的车辆主动安全技术,车辆电控稳定系统(ESP)已在国外许多高级轿车上得到应用。它是在ABS和ASR的基础上,增加了车辆转向行驶时横摆速率传感器、侧向加速传感器和方向盘转角传感器,通过这些传感器发出的信号监测车辆的状态和驾驶员的需求。当路面状况改变,使车辆行驶  相似文献   

14.
An integrated control system of active rear wheel steering (4WS) and direct yaw moment control (DYC) is presented in this paper. Because of the tire nonlinearity that is mainly due to the saturation of cornering forces, vehicle handling performance is improved but limited to a certain extent only by steering control. Direct yaw moment control using braking and/or driving forces is effective not only in linear but also nonlinear ranges of tire friction circle. The proposed control system is a model matching controller which makes the vehicle follow the desired dynamic model by the state feedback of both yaw rate and side slip angle. Various computer simulations are carried out and show that vehicle handling performance is much improved by the integrated control system.  相似文献   

15.
Driving force distribution control is one of the characteristic performance aspects of in-wheel motor vehicles and various methods have been developed to control direct yaw moment while turning. However, while these controls significantly enhance vehicle dynamic performance, the additional power required to control vehicle motion still remains to be clarified. This paper constructed new formulae of the mechanism by which direct yaw moment alters the cornering resistance and mechanical power of all wheels based on a simple bicycle model, including the electric loss of the motors and the inverters. These formulation results were validated by an actual test vehicle equipped with in-wheel motors in steady-state turning. The validated theory was also applied to a comparison of several different driving force distribution mechanisms from the standpoint of innate mechanical power.  相似文献   

16.
SUMMARY

An integrated control system of active rear wheel steering (4WS) and direct yaw moment control (DYC) is presented in this paper. Because of the tire nonlinearity that is mainly due to the saturation of cornering forces, vehicle handling performance is improved but limited to a certain extent only by steering control. Direct yaw moment control using braking and/or driving forces is effective not only in linear but also nonlinear ranges of tire friction circle. The proposed control system is a model matching controller which makes the vehicle follow the desired dynamic model by the state feedback of both yaw rate and side slip angle. Various computer simulations are carried out and show that vehicle handling performance is much improved by the integrated control system.  相似文献   

17.
Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.  相似文献   

18.
This paper presents a coordinated control of electronic stability control (ESC) and active front steering (AFS) with adaptive algorithms for yaw moment distribution in integrated chassis control (ICC). In order to distribute a control yaw moment into control tire forcres of ESC and AFS, and to coordinate the relative usage of ESC to AFS, a LMS/Newton algorithm (LMSN) is adopted. To make the control tire forces zero in applying LMS and LMSN, the zero-attracting mechanism is adopted. Simulations on vehicle simulation software, CarSim®, show that the proposed algorithm is effective for yaw moment distribution in integrated chassis control.  相似文献   

19.
设计基于最优控制理论的横摆力矩控制策略和适用于复杂工况的制动力分配策略;设计基于模糊控制理论的滑移率分配算法并提出使横摆力矩控制和变滑移率控制协同工作的方法;最后通过转向盘的阶跃输入和正弦输入工况验证制动力分配策略的正确性和联合控制的有效性。  相似文献   

20.
为了提高汽车在突发爆胎事故时的稳定性,对爆胎汽车主动制动控制策略进行了研究。根据车轮爆胎时间与压力变化的关系,在UniTire模型基础上建立了爆胎模型;根据电子稳定性控制系统中横摆角速度及质心侧偏角对汽车稳定性影响的关系,基于二自由度汽车动力学模型,通过计算汽车横摆角速度及质心侧偏角实际值与理想值的偏差,并基于线性二次型调节器最优控制方法决策出最优附加横摆力矩,从而修正爆胎后汽车的运动状态。最后通过计算机仿真对所提策略的有效性进行了验证。结果表明:主动制动控制策略可以保证爆胎过程中汽车的行驶稳定性和安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号