首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
针对城市道路中公交进出直线式与港湾式停靠站对外侧车道通行能力产生影响的问题,运用排队论与间隙接受理论相关成果,分别建立了直线式、港湾式排队无溢出及港湾式排队有溢出3种情况下公交进出停靠站对外侧车道的影响时间模型;在此基础上以公交出站延误及站点服务强度作为约束条件,推导出外侧车道通行能力计算模型,并给出设置条件;对仿真模拟试验结果与模型计算结果进行对比,并对模型适用性进行了检验,给出了不同公交到达率下3种模式设置港湾式公交停靠站的通行能力范围值。结果表明:该模型具有较高的精度和可靠性,能够为城市道路设计提供必要的参考依据。  相似文献   

2.
本文在分析公交停靠站通行能力的基础上,运用排队论公式确定出公交停靠站线路容量计算公式,从不同方面提出了公交停靠站线路容量优化分析方法。结果表明直线式公交停靠站改成港湾式时,在到达率不大时能够起到优化线路容量的效果;当平均到达率小于0.3(veh/min)时,提高泊位数能够大幅度增加线路容量;减少站距能够提高停靠站线路容量,而且效果显著。  相似文献   

3.
针对常规公交停靠站的不足,提出双港湾式公交停靠站。该形式停靠站能够充分利用道路资源,利用横向拉伸缩短站台长度,规范公交车辆在停靠站有序停靠,从而提高站台利用率和减少乘客站内和站间的换乘距离。通过停靠站通行能力和乘客换乘距离两个方面与常规站台进行对比,指出了双港湾式公交停靠站的适用条件,并对停靠站的服务能力进行估算。该形式公交停靠站适用于公交线路较多的城市主干道,可以通过公交车辆进行分类停靠,提高公交停靠站的通行能力,并能缩短乘客换乘距离。  相似文献   

4.
在公交车辆相同的延误情况下,以多个泊位公交停靠站能服务的公交车辆到达率与单个泊位的公交车辆到达率比值作为确定有效泊位数的方法,通过Vissim建立港湾式公交停靠站的仿真模型,结合相关数据,对不同泊位下公交停靠站的有效泊位进行了分析计算。  相似文献   

5.
我国城市道路公交停靠站的设置距离交叉口太近、公交站台长度不合理及路段公交停靠站对站布置等,导致公交站点处成为道路的交通瓶颈,造成通行能力下降、公交站台处交通拥堵及交通安全差等现象。通过对公交停靠站设置位置进行选择,根据公交站点通行能力模型给出标准公交停靠站在不同道路等级条件下的设置尺寸,进而通过模型计算给出路段和交叉口公交停靠站在不同断面情况下的设计模式,成为城市道路公交停靠站设计的标准,并为城市道路的规划与设计提供设计参考。  相似文献   

6.
为合理确定港湾式公交停靠站的泊位数,以实际公交站点交通观测数据为基础,从优化公交站点供需平衡的角度分析公交停靠需求与通行能力之间的关系,结合经典的通行能力计算模型,并在模型中添加港湾式公交出站变道造成的延误,建立单位时间内公交停靠需求大于站点通行能力的概率计算方法,在此基础上建立了港湾式公交站点泊位数优化方法.以武汉市中山大道长江二桥公交站点为例,根据站点运行情况将站点公交车排队溢出概率的上限值设定为15%,经计算得出该站点单位时间(1 min)的公交动态停靠需求大于站点通行能力的概率高于15%,通过调整泊位数提高站点通行能力后,通行能力满足公交停靠需求(p<15%),表明该方法能准确确定港湾式公交站点的泊位需求数,为港湾式公交站点泊位数设计提供依据.   相似文献   

7.
针对多线路公交停靠站公交车辆进出站排队现象严重,站点延误大,运行效率低等问题,分析了不同停靠组织形式和不同主辅站设置类型对公交运营效率的影响。运用Vissim对3泊位直线式和港湾式公交停靠站点的顺序停靠组织和不同组合的划线停靠组织分别进行仿真研究,从公交延误、车辆总延误、行程时间以及通过车辆数4个方面对不同停靠组织形式在不同条件下的交通运行效果进行评价,得到不同形式公交停靠站的最佳停靠组织形式;在此基础上,对不同组合型式的6泊位主辅站停靠组织进行仿真评价,得到了最优的主辅站设置类型。仿真结果表明:对3泊位公交停靠站采用直线式停靠站,总延误平均降低38.4%,采用港湾式公交停靠站,总延误平均降低40.6%;对6泊位主辅站采用双港串联设置,总延误降低22.8%。   相似文献   

8.
通过建立港湾式公交站点元胞自动机模型,运用Visual C++编程对城市道路中港湾式公交站点影响下的混合交通流运行情况进行模拟,分析港湾式公交站点布设位置对其下游交叉口进口道通行能力的影响。结果表明,存在一个临界布设位置使港湾式公交停靠站对其下游交叉口进口道通行能力的影响最小,且该临界位置受下游交叉口进口道处车辆平均排队长度的影响。  相似文献   

9.
定性分析了影响路段式公交停靠站公交车辆通行能力的影响因素,并给出关键参数,即公交到达率、上下客人数、公交减速进站时间、在站停靠时间、离站清空时间.在明确界定相关关键参数概念基础上,给出了调查数据,对参数和其影响因素进行回归拟合,对通行能力模型的关键参数进行标定,再通过统计分析及实测数据来研究通行能力模型.以上海市外环内若干典型公交停靠站的实测数据为基础,对典型站点的通行能力进行计算,对比验证了方法的可靠性.  相似文献   

10.
在对南昌市城区主干道港湾式公交停靠站调查的基础上,通过 Vissim 仿真模拟得到大量交通流数据,从港湾式站台设置的长度、站台乘客等待数量、路段车道数、路段车辆的平均速度、站台停止车辆数、以及进出口平均延误时间6个方面建立神经网络分析模型,以路段平均延误车辆/路段实际通行能力作为通行能力的影响折减,运用 Matlab 软件编程求得变量因素与输出影响的连接强度权值 W 与偏置值 B ,为港湾式公交站对路段通行能力影响提供了定量化影响系数。   相似文献   

11.
为解决设置公交专用道所带来的道路资源利用率低,相邻车道交通压力增大,专用道分时段开启致使社会车辆行驶混乱等问题,基于车种分离思想,提出一种公交车辆与右转车辆混合专用道的组织方式,允许公交车辆与右转社会车辆共用一条车道,以寻求保持公交优先与减少对社会车辆影响的平衡点。为论证该方案的可行性,首先,针对所研究的道路环境,提出了基于流量生成模型与配时优化模型的车道组仿真流程;随后,在考虑红灯时右转车辆行驶特性的前提下,建立了人均延误和车均延误的双指标评价矩阵模型;最后,分别在MATLAB和VISSIM仿真平台上,实现了对传统车道组、公交与右转混合型专用道车道组和公交专用道车道组3种方案的效益评价,并对其中的关键影响因素进行分析。仿真结果表明:所提出的公交与右转混合型专用道车道组的总体车均延误与人均延误在大多情况下处于较低水平,而公交专用道车道组和普通车道组也具有各自的优势区域;公交与右转混合型专用道的车道组织方式可以在保证社会车辆延误不明显增加的情况下,有效确保公交车辆的优先性,在一定条件下具有适用性,在工程实践中可作为公交专用道的过渡或替代方案。  相似文献   

12.
为了降低非机动车对沿人行道设置的公交停靠站周边交通的影响,对直线式单泊位公交停靠站设置进行优化。选取重庆市6个沿人行道设置的单泊位公交停靠站进行调研,分析非机动车车道宽度、公交车停靠站长度、当量交通量、非机动车速度等参数与3类冲突率(非机动车与公交车3种形态的追尾与横向冲突率)的相关关系,拟合得到回归方程。根据回归方程和相关性系数建立交通冲突预测模型,并对模型进行验证,预测模型误差均小于10%。研究表明:当非机动车道设置宽度在3.5~4.0 m、直线式单泊位公交停靠站设置长度在16~18 m时,3类冲突率最低。当量交通量达到700 pcu/h之后,冲突率趋于平稳;此时非机动车速度仍不宜大于6 m/s。选取2个公交车停靠站进行冲突率预测,并对其进行安全等级评价。以冲突率最低值作为约束条件,对沿人行道设置的直线式单泊位公交停靠站进行优化。研究成果可为公交停靠站周边区域的交通管理和规划设计提供理论依据。   相似文献   

13.
设置有路中式公交专用道的交叉口进口道存在因公交与其他车辆两股平行车流在路口同时左转、直行和右转而形成的多路交织现象,传统信号控制方案已无法消除这类交叉口相位放行造成的交织冲突问题。为解决该问题,设计了一种借用公交专用道左转的新型交叉口,规定了各流向车辆的运行规则,同时设计了主信号与预信号相位方案及相互协调配时关系。具体来说,根据公交直行车辆和其他左转、直行车辆的到达-驶离图式,分别建立各流向不同情况下车辆的延误与停车次数计算方法,以交叉口车均延误与车均停车次数加权的当量费用最小为目标,建立交叉口信号配时优化模型。为验证该优化控制策略的有效性,结合算例对传统控制方案和优化控制方案进行比较,并分析等待区长度对车辆排队演化过程的影响,确定优化方案适用场景。结果表明:相对于传统方案,优化方案增加了交叉口的通行能力,使得车均当量费用下降比例达到了32.3%;参数灵敏度分析显示,主信号等待区长度宜设置为80 m。所提出的控制策略通过借用公交专用道左转,提高了交叉口的利用效率,最大限度地降低了对公交优先策略实施的影响,能够完全消除设置有路中式公交专用道交叉口相位放行中的交通交织冲突现象,以保证交叉口行车安全。  相似文献   

14.
选取天津市快速环路的路段为仿真背景,在主线为双向6车道和8车道时,分别进行多功能车道设置的必要性分析。采用VISSIM微观仿真软件,在主路车道数相同时,将设与不设多功能车道两种情况下事故车辆每车停车时间均取为15 min,仿真每种情况在事故停车率分别为0.05%、0.1%下的通行能力及延误。通过比较设置与不设置多功能车道在车辆紧急停靠时主线的通行能力及其它车辆延误,来分析多功能车道设置的必要性。  相似文献   

15.
Conventional Transit Signal Priority (TSP) controls often reach the limitation for arterials accommodating heavy bus flows since the priority function can significantly increase delay at minor streets. Under such conditions, a proper signal progression plan that accounts for the benefits of buses may offer the potential to improve the reliability of bus operations and increase the bus ridership. This study proposes a bus-based progression model to reduce the delay of buses on local arterials. Given the cycle length and green splits at each intersection, the bus-based progression model, grounded on the same notion as conventional signal progression methods, considers the operational characteristics of transit vehicles, such as the impact of bus dwell time and the capacity constraints at bus stops. Also, to deal with the stochastic nature of dwell time, this study introduces additional constraints to maximize the percentage of buses which can stay within the green band after leaving bus stops. Taking an arterial with five intersections and three two-way bus stops as an example, this study applies VISSIM as an unbiased tool for model evaluation. The simulation results demonstrate that the proposed model can significantly reduce bus passenger delays and the average person delays for the entire arterial, compared with the conventional progression models.  相似文献   

16.
为了防止公交车辆在线路重叠运行区间产生公交串车,在站点附近形成交通瓶颈,提出一种采用车速诱导策略来调整公交运行状态的动态调度模型。采用车路协同环境下的公交运营调度方式,结合各线路独自运行时的乘客需求和车辆车头时距规律,在避免重叠区站点公交串车的前提下,实现了各线路车辆最大程度地维持各自独立运行时车头时距的优化目标。提出的车路协同环境下的车速诱导调度策略,在引导各线路公交车辆间隔均匀地进入重叠区间后,根据乘客实时交通需求和道路交通状况,实现对车辆的实时调控。开发了一种启发式算法对车辆进入重叠区间的时刻进行求解,采用基于遗传算法的仿真过程求解了重叠区站点之间车辆的最佳运行速度,实现了重叠区间车辆动态调度过程。以哈尔滨市运行区间重叠的3条公交线路为实际案例进行仿真分析,对3条线路共计47辆公交车在重叠区12个站点之间的运行状况进行了优化调度。结果表明:采用提出的启发式算法进行调度后,车辆可以完全均匀地进入重叠区。通过对比采用动态调度优化前后的车辆运行状态发现,车辆串车现象由优化前的单站最多发生6次下降为0次,最大程度地实现了避免公交串车的目标。此外,车速诱导策略不仅避免了不同线路车辆在重叠区站点的串车现象,而且可以调整各线路上相邻两车之间的车头时距偏差,线路1的车头时距最大偏差从55%下降到了30%,线路2的车头时距最大偏差从25%下降到了13%,线路3的车头时距最大偏差从23%下降到了18%。  相似文献   

17.
为了给大型营运客车换道预警系统设计提供参考,采用毫米波雷达、激光雷达、车道线识别传感器、GPS、视频监控系统以及控制器局域网(CAN)总线数据采集仪等设备,基于小型乘用车搭建浮动车采集平台。通过在试验线路上进行1.5×104 km的驾驶试验,获取1 200余次营运客车的真实换道数据。以Jula提出的换道安全性模型为基础,结合营运客车的换道行为特征,通过分析换道进程结束后客车需要与周围车辆保持的安全距离,建立适合于营运客车的3类换道安全性识别模型(客车与自车道前方车辆、目标车道前方车辆、目标车道后方车辆),并利用真实数据对3类模型进行验证。研究结果表明:客车换道持续时间均值为10.4 s,换道起始时刻与目标车道后方车辆的距离为10.0~40.0 m;所有换道样本中,73.3%的换道过程中客车速度要高于目标车道后方车辆,且超过90%的换道过程是由前方慢车引起;不同的速度区间下,车速和航向角联合变化情况下,驾驶人控制营运客车的横向偏移速度保持稳定,可认为客车驾驶人的心理预期换道进程存在固定经验模式,这与小型车换道的研究结论存在较大差异,传统的TTC预警算法识别率较低,在不同速度区间情况下,所提出的模型对客车与自车道前方车辆、目标车道前方车辆、目标车道后方车辆的换道安全识别评价准确率均超过了90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号