首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
为增强水泥土受力性能,充分利用纤维的加筋作用,基于试验探究了水泥土掺量、聚丙烯纤维掺量及长度对水泥土无侧限抗压强度的影响规律,聚丙烯纤维掺量对水泥土干湿循环耐久性能的影响。结果表明:试验中聚丙烯纤维掺量0~0.3%、纤维长度3~12mm范围内,随着聚丙烯纤维掺量及长度的增加,水泥土掺量的提高,水泥土无侧限抗压强度增大;随着聚丙烯纤维掺量的增加,干湿循环作用后水泥土质量损失、强度损失均下降,水泥土抵抗干湿循环性能增强。  相似文献   

2.
为了验证工业废渣复合材料对于膨胀土的稳定处理效果,通过化学组分分析,明确稳定膨胀土作用机理,采用击实试验、膨胀率试验和CBR试验,分析不同掺量稳定膨胀土的击实、膨胀和强度特性变化规律,按照膨胀率和CBR双控原则,确定稳定膨胀土最佳掺量为4.5%,并与相同掺量石灰稳定膨胀土性能进行对比。试验结果表明:随着工业废渣复合材料掺量增加,稳定膨胀土的膨胀率逐渐减小,CBR值逐渐增大。相同掺量下,工业废渣复合材料稳定膨胀土的CBR值高于石灰稳定土,能够满足膨胀土路基稳定处理要求,可以替代石灰用于膨胀土稳定处理。  相似文献   

3.
为研究玄武岩纤维和粗、细聚丙烯纤维加筋水泥土抗压性能,本研究通过无侧限抗压强度试验,对浸水条件下不同土质、水泥掺量、纤维种类、纤维掺量、纤维长度以及纤维组合方式试件抗压性能进行了研究。结果表明:水泥能够一定程度提高土体无侧限抗压强度,但水泥土试样应力应变曲线峰后下降较快,呈脆性破坏特征;掺入纤维能继续提高水泥土无侧限抗压强度,有效改善水泥土脆性破坏模式并提高水泥土抗开裂性能;玄武岩纤维分散性不良,而粗、细聚丙烯纤维分散性较好,适用于纤维加筋水泥土;纤维掺量和纤维长度对纤维加筋水泥土抗压性能有较大影响,随着纤维掺量的增加,无侧限抗压强度总体呈现先增大后减小规律;对于不同土质和不同纤维种类,纤维长度对纤维加筋水泥土无侧限抗压强度的影响不一。细聚丙烯纤维理想长度和掺量为12 mm和0.8%,粗聚丙烯纤维理想长度和掺量为38 mm和0.8%。相较于单种纤维加筋,粗细聚丙烯纤维混掺加筋对水泥土抗压强度的增强与脆性破坏模式的改善效果更好,粗细混掺聚丙烯纤维加筋水泥土理想组合为38 mm长粗聚丙烯纤维(掺量为0.3%)+12 mm长细聚丙烯纤维(掺量为0.3%)。  相似文献   

4.
石灰、水泥、粉煤灰改良膨胀土对比试验   总被引:3,自引:0,他引:3  
通过对广州绕城高速公路某施工段膨胀土路基填料的改良试验,对比分析了掺加生石灰、水泥、粉煤灰改良对膨胀土试样胀缩性能的影响,从适用性和经济性角度看用生石灰改良效果最好。确定了施工时,中、高膨胀土的最佳掺灰率为6%,膨胀土经改良处理后可作为高速公路的路基填料。  相似文献   

5.
以安徽某公路工程膨胀土为研究对象,在保持含水率和干密度不变的情况下,依次将磷尾矿、EPS颗粒、玄武岩纤维按不同比例掺入膨胀土中,基于最佳掺量进行改良土试验,试验结果表明:适量磷尾矿改良膨胀土能有效降低膨胀土的膨胀率,提高膨胀土的抗压强度和剪切强度,掺量为7. 5%时效果最佳。同时对抗剪强度指标分析,粘聚力与掺量成线性关系,内摩擦角与掺量成二次多项式关系; EPS能抑制膨胀土的膨胀性,但会降低膨胀土的抗压强度和延性,掺量为20%最佳;玄武岩纤维对复合改性土抗压强度贡献很小,但能增强其延性;最终得到磷尾矿、EPS和玄武岩纤维最佳掺量分别为7. 5%,20%,0. 4%。  相似文献   

6.
为充分研究短切玄武岩掺量和长度对沥青混合料的性能影响,该文通过向混合料掺加0、0.2%、0.35%和0.5%(占混合料质量)的纤维进行马歇尔试验,分析纤维掺量对混合料马歇尔指标的影响及推荐纤维的最佳掺量;在最佳纤维掺量下,通过对掺加3、6、9 mm等不同长度纤维的混合料进行车辙试验、水稳定性试验和低温试验,分析纤维长度对混合料路用性能的影响。试验结果表明:沥青混合料的最佳油石比、稳定度和流值随纤维掺量的增加而先增加后降低,且在0.35%纤维掺量下数值达到最大;空隙率和毛体积密度随纤维掺量增大而分别增大和降低;在0.35%最佳纤维掺量下,纤维沥青混合料的各项性能均得到显著提高,其中掺加6mm纤维的混合料性能最优。  相似文献   

7.
为了探究纤维加筋固化土技术应用于应急机场的可行性,通过无侧限抗压强度试验,探究了不同掺量和龄期的水泥、固化剂以及纤维复合固化黄土的强度特性。结果表明:固化剂与纤维可以提高黄土无侧限抗压强度,其中水泥固化效果最优,且最优掺量为8%,随着纤维和砂掺量的增加,加筋固化土的强度先增大后又减小,纤维掺量为0.30%和0.45%时固化黄土强度较高,砂的最佳掺量在4%左右。进行简易机场布设时,建议机场道面工程使用12 mm改性聚丙烯纤维掺量0.45%,固化剂选用P.O 32.5R硅酸盐水泥掺量8%,砂掺量低于4%的复合固化土。  相似文献   

8.
针对高速公路和高速铁路对路基沉降变形要求的现状,通过固结试验,研究玻璃纤维和石灰对红黏土压缩模量的影响规律。试验结果表明,在红黏土中掺入一定量的玻璃和石灰可以明显地提高其压缩模量,其中石灰在提升幅度上优于玻璃纤维。纤维土的压缩模量随着纤维掺量和长度的增加先增加后减小,在掺量为1‰和长度为9 mm时达到最大值。纤维石灰土的压缩模量呈现出随着纤维掺量的增加先增加后减小,随着长度的增加而一直增加的规律。采用多元回归分析方式拟合纤维掺量和纤维长度对纤维石灰土和纤维土的压缩模量的影响。研究成果对纤维石灰土作为路基填土材料的工程应用提供了试验数据和理论依据。  相似文献   

9.
本文介绍了试验的原材料性质和试验方案,并阐述了玄武岩改善膨胀土的机理;通过对经过玄武岩改良后的膨胀土进行室内试验,研究不同玄武岩纤维掺量和不同养生期对改良膨胀土的胀缩及强度的变化影响规律,从而为公路建设提供参考。结果表明,玄武岩纤维改善膨胀土的无荷膨胀量及膨胀力都随纤维掺量及养生龄期的增加而减小;一定掺量范围内,抗剪和抗压强度均随纤维掺量的增加而增加,超过范围后又有所降低;玄武岩纤维最佳掺量为0.3%,膨胀土的最佳养护期为14d。  相似文献   

10.
通过无侧限劈裂抗拉强度试验及微观形貌试验,探究了水泥、固化剂,以及多种纤维复合固化黄土的抗拉强度特性及其加筋机理。结果表明,水泥固化土劈裂抗拉强度高于水泥石灰固化土和长大固化土;水泥固化土的劈裂抗拉强度随水泥掺量的增加而增大,不同水泥掺量的水泥固化土的劈裂抗拉强度在纤维掺量为0.45%时强度较高;12mm改性聚丙烯纤维加筋固化土劈裂抗拉强度较高,混杂纤维的不能显著提高固化土的无侧限劈裂抗拉强度。  相似文献   

11.
《公路》2021,66(6):313-317
为了利用大潮高速公路沿线高液限土,创新性地采用掺稻草纤维改良方法,对现场高液限土均匀掺入0.5%、1%稻草纤维后进行一系列室内土工试验。通过控制土样的含水率与击实功,采用含水率15%、20%、25%、30%,击数98击进行击实试验、CBR试验,探究了改良土对含水率的敏感性,并对试验数据进行拟合,得到此改良高液限土的干密度、CBR值、膨胀量与含水率和掺量之间的关系,进而分析了掺0.5%、1%稻草纤维高液限土的路用性能。试验研究发现:掺稻草纤维对高液限土的干密度影响不大,稻草纤维在路基中仅起到加筋作用,没有改变土的性质;掺稻草纤维改良高液限土CBR强度明显提高,在20%含水率条件下最为明显;掺稻草纤维高液限土膨胀量很小,基本不需要考虑膨胀对路基变形的影响。  相似文献   

12.
在土中掺加聚丙烯纤维可以有效的改善土体的力学性能,为了解掺加聚丙烯纤维对土体路用性能的影响,采用了击实试验、CBR试验和回弹模量试验,研究了掺加纤维、击实功对各指标的影响。试验结果表明,掺加聚丙烯纤维降低了土体的最佳含水量和最大干密度,尤其是对最佳含水量的影响比较显著;掺加聚丙烯纤维可以显著的提高土体的CBR值和回弹模量,并且随着纤维掺量的增加(纤维与干土的质量比:0%~0.6%),纤维加筋土的CBR值和回弹模量也随之增加,加筋土的CBR值受到试验击实功的影响比较显著,提高击实功有利于纤维加筋作用的发挥,因此,在土中掺加聚丙烯纤维可以改善土体的路用性能。  相似文献   

13.
为研究冻融作用对聚丙烯纤维土力学性能的影响规律,通过正交试验以及极差方差显著性分析,得到了纤维掺量、纤维长度、冻融循环次数3个因素对于聚丙烯纤维土抗剪强度和无侧限抗压强度的影响规律,确定冻融作用下聚丙烯纤维土最佳组合方案为:纤维长度为9 mm、纤维掺量为3‰。最佳组合方案下的纤维土粘聚力较素土有一定的提升,且提升效果随冻融次数的增加更为显著;内摩擦角随冻融次数的增加出现了先增大后减小的现象,在冻融3次以后,掺入最优组合方案的纤维土内摩擦角较素土要小;无侧限抗压强度的提升最为显著,增强效果随着冻融次数的增加变弱。  相似文献   

14.
《公路》2015,(1)
通过大量室内试验,研究了聚酯纤维及聚丙烯纤维对水泥稳定碎石的无侧限抗压强度、劈裂强度和抗压回弹模量等力学性能的影响。结果表明:聚酯纤维和聚丙烯纤维都可以大幅度地提高水泥稳定碎石的无侧限抗压强度和劈裂强度,降低抗压回弹模量;给出了纤维最佳质量掺量,聚酯纤维约为0.07%,聚丙烯纤维约为0.05%;相同龄期、相同纤维掺量的情况下,聚酯纤维水泥稳定碎石比聚丙烯纤维水泥稳定碎石的强度高、回弹模量低。同时,根据试验结果分析,得出了聚酯纤维、聚丙烯纤维掺量与水泥稳定碎石各力学性能指标的回归关系式。  相似文献   

15.
为探究冻融循环条件下采用粉煤灰改良盐渍土路基的抗剪切性能,选取绥化至大庆高速公路沿线盐渍土样进行不同粉煤灰掺量下的直剪试验研究。结果表明:历经多次冻融循环,盐渍土黏聚力和内摩擦角均出现下降趋势;随着粉煤灰掺量的增加,改良盐渍土的内摩擦角、黏聚力和抗剪强度呈现出先升高后下降的趋势;当粉煤灰掺量为15%时,盐渍土样的黏聚力、内摩擦角等力学指标均达到最大值。绥大高速公路地区路基修筑过程中,可以在路基土中掺加15%粉煤灰,以提高路基土抗剪强度及抗冻融循环作用的能力。  相似文献   

16.
在水泥稳定土中掺入不同长度、不同掺量的聚丙烯纤维,制备了聚丙烯纤维水泥稳定土(PFCS),通过击实试验确定最佳含水量及最大干密度,采用抗压强度试验及抗劈裂性能试验,分别研究了聚丙烯纤维的掺入对水泥稳定土的抗压强度及抗劈裂性能的影响。结果表明:掺入5%水泥的PFCS最佳含水率与干密度分别为17.3%、1.749g/cm~3;当水泥与聚丙烯纤维掺量相同时,PFCS的无侧限抗压强度随养护龄期的增加而提高,且纤维长度越长对水泥稳定土基体的裂缝抑制作用越明显;随着纤维掺量及长度的增加,水泥稳定土7d无侧限抗压强度随之增大,抗裂性能显著增强。  相似文献   

17.
《公路》2021,66(8):29-33
废旧玻璃代替部分集料在减少道路建设对自然资源消耗的同时,还影响沥青混合料的力学性能。为提高掺有玻璃集料的沥青混合料的力学性能,在沥青混合料中添加聚丙烯纤维,通过标准马歇尔试验、间接拉伸刚度模量试验和动态蠕变试验研究了聚丙烯纤维和玻璃对沥青混合料力学性能的影响。结果表明:在一定掺量范围内聚丙烯纤维或玻璃单独掺加均可提升沥青混合料稳定度,二者对沥青混合料的稳定度最大提升效果分别为11.29%和12.10%。沥青混合料间接拉伸刚度模量与玻璃掺量正相关,但随聚丙烯纤维掺量的增加而先增加后降低,0.2%为聚丙烯纤维最佳掺量;在聚丙烯纤维掺量为0.2%时,玻璃最佳掺量为6%。  相似文献   

18.
本文主要对不同聚丙烯纤维掺量的自密实钢筋混凝土梁在不同疲劳应力水平作用下的裂缝发展规律进行了弯曲疲劳试验研究,研究结果表明:聚丙烯纤维能在一定程度上抑制混凝土裂缝的扩展。同一疲劳应力水平作用下,随着聚丙烯纤维掺量的调高,试验梁的裂缝宽度及裂缝长度相应变小,但裂缝宽度及长度变化规律图与其增量变化规律图基本相似,且不同聚丙烯纤维掺量的自密实混凝土梁裂缝发展规律相近。相同聚丙烯纤维掺量的试验梁,作用的疲劳应力水平越高,其裂缝宽度及长度增长速度越快;同一疲劳应力水平作用,聚丙烯纤维掺量越大的试验梁,其裂缝宽度及长度增长速度越慢。  相似文献   

19.
采用正交试验和极差分析法,对低液限粉土进行复掺改性试验,结果表明掺加膨润土能明显改善粉土的密实度,掺量为9%时干密度和回弹模量达到最大值;对低液限粉土进行强度及压缩性复掺改良试验,并通过极差分析计算,确定低液限粉土的最佳改良掺比为水泥4%+水玻璃∶氯化钙=3∶1+石灰4%+聚丙烯纤维0.3%;在复掺配比的基础上进行掺入和未掺入膨润土物理力学参数对比,掺入9%膨润土后粉土的抗弯沉性能更佳,最佳复掺配比为水泥4%+水玻璃∶氯化钙=3∶1+石灰4%+聚丙烯纤维0.3%+膨润土9%。  相似文献   

20.
利用不固结不排水的三轴剪切试验系统的调查了不同围压、含水率、纤维掺量、养护时长下纤维改了路基土的应力~应变关系。确定了纤维的最佳掺量以及上述4种影响因素与改良路基土峰值强度的演化关系,并提出了可考虑上述影响因素的纤维改良路基土峰值强度预估模型,利用实测数据验证了该模型的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号