首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
利用有限元软件Adina建立平面二维圆柱绕流的数值模型,模拟低雷诺数条件下流体与圆柱间的涡激振动。随着流速加大,圆柱振动经历非锁定一锁定一脱离锁定的过程,由于锁定形态下圆柱振动与尾涡脱落引起的流体力形成共振,使圆柱的振幅增大。仅考虑圆柱顺流向振动时,横流向振幅略有增加;同时考虑圆柱在平面内的旋转和顺流向振动时,横流向振幅显著增加、锁定区间加宽,且质量比越低变化就越明显。  相似文献   

2.
The effect of the mass ratio on the flow-induced vibration (FIV) of a flexible circular cylinder is experimentally investigated in a towing tank. A Tygon tube with outer and inner diameters of 7.9 mm and 4.8 mm, respectively, was employed for the study. The tube was connected to a carriage and towed from rest to a steady speed up to 1.6 m/s before slowing down to rest again over a distance of 1.6 m in still water. Reynolds number based on the cylinder’s outer diameter was 800–13,000, and the reduced velocity (velocity normalized by the cylinder’s natural frequency and outer diameter) spanned from 2 to 25. When connected, the cylinder was elongated from 420 mm to 460 mm under an axial pre-tension of 11 N. Based on the cylinder’s elongated length, the aspect ratio (ratio of the cylinder’s length to outer diameter) was calculated as 58. Three mass ratios (ratio of the cylinder’s structural mass to displaced fluid mass, m*) of 0.7, 1.0, and 3.4 were determined by filling the cylinder’s interior with air, water, and alloy powder (nickel-chromium-boron matrix alloy), respectively. An optical method was adopted for response measurements. Multi-frequency vibrations were observed in both in-line (IL) and cross-flow (CF) responses; at high Reynolds number, vibration modes up to the 3rd one were identified in the CF response. The mode transition was found to occur at a lower reduced velocity for the highest tested mass ratio. The vibration amplitude and frequency were quantified and expressed with respect to the reduced velocity. A significant reduced vibration amplitude was found in the IL response with increasing mass ratios, and only initial and upper branches existed in the IL and CF response amplitudes. The normalized response frequencies were revealed to linearly increase with respect to the reduced velocity, and slopes for linear relations were found to be identical for the three cases tested.  相似文献   

3.
白旭  乐智斌 《船舶工程》2016,38(8):34-39
涡激振动发电装置是一种能够捕获浅海区域低流速海流能的新型能源装置,为了在不同海况下均能高效地对能量进行转换,需要对振动参数进行探讨,因此本文对质量比在振动响应和能量方面进行了分析。结合尾流振子模型和结构振动模型,得到双自由度涡激振动耦合模型,将Stappenbelt实验设置输入该模型,模型计算结果与其实验结果吻合,验证了模型的正确性。通过对中低质量比、超低质量比和高质量比三种条件下的柱体涡激振动响应进行分析,结果表明:中低质量比条件下,振幅和频率锁定区间宽度随质量比增加而减小;超低质量比条件下,顺流向无量纲振幅接近1,无法忽略,双向最大振幅发生约化速度Ur=6附近;高质量比条件下,最大振幅所对应的约化速度随着质量比的增加而增加,顺流向第二次波峰消失,横向出现两次波峰。  相似文献   

4.
We studied the effects of the surface roughness and initial gap on the responses of vortex-induced vibration (VIV) of a circular cylinder near a stationary plane wall, employing numerical methods. The VIV response amplitudes, lock-in regions, hydrodynamic forces, VIV trajectories and flow fields for three different surface roughnesses and two different initial gaps were systematically compared. The results reveal that the reduced velocity range can be divided into three regions based on the VIV amplitude as pre-lock-in, lock-in, and post-lock-in regions. The width of the lock-in region is not sensitive to the variation of the roughness. The mean drag coefficient has a decreasing tendency with the increased roughness. For a small initial gap, the clockwise wall boundary layer vortices has coalesced with the clockwise vortices shed from the upper side of the cylinder, which further suppresses the shedding of the counter-clock wise vortices from the lower side of the cylinder. The vortex shedding flow pattern displays a weak 2S mode. However, for a large initial gap, there is no coalescing action operating in the wake region and hence most of the vortex shedding flow patterns show an asymmetric 2S mode.  相似文献   

5.
A self-tuning fuzzy PID (ST-FPID) control scheme is implemented within a joint interactive (Matlab/Simulink/Fluent) co-simulation framework for effective two degrees of freedom (2DOF) vortex-induced vibration (VIV) control of an elastically-mounted circular cylinder in laminar cross-flow of incompressible non-Newtonian power-law fluids based on the control action of a single transverse force actuator. The model-free controller, which systematically tunes the control parameters online in real time based on given rules, is well-known to be highly advantageous over the previously employed conventional PID controllers. It is particularly capable of handling the intricate non-linear dynamic effects inherent in the complex fluid rheology of non-Newtonian flow past the cylinder in presence of unmodeled system dynamics, high parametric uncertainties, diverse operational conditions, and time-varying external disturbances and control signals. Extensive numerical simulations reveal that the complex shear-thinning and shear-thickening behaviors of fluid viscosity can substantially influence the cylinder dynamic response, applied hydrodynamic forces, and flow structure. In particular, effectiveness and high performance of the adopted ST-FPID control strategy in substantial suppression of the high amplitude coupled 2DOF VIV of the elastically-mounted cylinder at selected critical reduced velocities in the lock-in region are established for a wide range of power-law index parameters (e.g., up to 83% reduction in RMS value of cylinder cross-flow displacement and up to 35% reduction in RMS value of cylinder in-line displacement for n=1and U* = 5 at Re = 100). Also, the vigorous action of the error-driven ST-FPID controller in forcing the high strength vortex shedding patterns of the uncontrolled cylinder out of the lock-in condition into the classical von Kármán vortex street of 2S-type mode of moderately weaker strengths is verified.  相似文献   

6.
This paper reports a numerical study based on a wake oscillator model, to determine the three-dimensional vortex-induced vibration (VIV) responses on a flexible cylinder with pinned-pinned boundary conditions subjected to a uniform flow. Four different aspect ratios have been selected for the study. The coupling equations of the structural oscillator models and wake oscillator models in both the cross-flow (CF) and in-line (IL) directions have been solved using a standard central difference method of the second order. The structural displacement, structural frequency, response wave pattern, response trajectory, and lift force coefficient, for four aspect ratios, have been compared. The numerical results establish that, for a small aspect ratio, the CF displacements have absolute standing wave behaviors without travelling wave behaviors, and the IL displacements have dominant standing wave behaviors with slight travelling wave behaviors. Further, the VIV trajectory is repeatable and displays figure-eight shapes. However, for a large aspect ratio, the CF displacements display identical characteristics with the IL displacements for a small aspect ratio, and the IL displacements for a large aspect ratio are simultaneously dominated by standing and travelling wave behaviors. Moreover, the VIV trajectory is apparently aperiodic and shows chaotic shapes.  相似文献   

7.
低质量-阻尼因子圆柱体的涡激振动预报模型   总被引:6,自引:1,他引:5  
本文考查了在均匀来流中作横向振荡的圆柱体与周围流体之间的能量转移,由此建立了基于受迫振荡实验数据的弹性支撑圆柱体在均匀流中的涡激振动响应预报模型.根据此模型,分析了低质量-阻尼因子圆柱体的涡激振动响应特性.就水中圆柱体涡激振动响应特性相关的几个关键性问题进行了深入的讨论,包括响应振幅的决定因素、附加质量对锁定范围及响应频率的影响.正确理解这些问题对于深水立管涡激振动响应的有效预报至关重要.  相似文献   

8.
In this study, the dynamic response of a vertical flexible cylinder vibrating at low mode numbers with combined x?y motion was investigated in a towing tank. The uniform flow was simulated by towing the flexible cylinder along the tank in still water; therefore, the turbulence intensity of the free flow was negligible in obtaining more reliable results. A lower branch of dominant frequencies with micro vibration amplitude was found in both cross-flow and in-line directions. This justifiable discrepancy was likely caused by an initial lock-in. The maximum attainable amplitude, modal analysis and x?y trajectory in cross-flow and in-line directions are reported here and compared with previous literature, along with some good agreements and different observations that were obtained from the study. Drag and lift coefficients are also evaluated by making use of a generalized integral transform technique approach, yielding an alternative method to study fluid force acting upon a flexible cylinder.  相似文献   

9.
Existing VIV prediction approaches for steel catenary riser (SCR) typically employ truncation model without considering the interaction between the SCR and soil, and only allow for cross-flow (CF) VIV. In this study, a time domain approach accounting for the SCR-soil interaction is proposed to predict the CF and in-line (IL) VIV induced fatigue damage of a SCR at touchdown zone (TDZ). The hydrodynamic force resulting from the vortex shedding is modeled using the forced oscillation test data of a rigid cylinder and an empirical damping model, which are defined as functions of the non-dimensional dominant frequency and amplitude of the SCR response. Due to the coupling effect, the IL VIV force is magnified based on the CF VIV amplitude. By combining a linear hysteretic interaction model with a trench shape model, some particular phenomena during the vertical SCR-soil interaction are captured and qualitatively discussed, while for the horizontal direction, the seabed is simplified as nonlinear spring model. Based on these models, parametric studies are conducted to broaden the understanding of the sensitivity of VIV induced fatigue damage to the seabed characteristic. The results indicate trench depth, vertical and lateral stiffness, and clay suction are significantly affect the VIV induced maximum fatigue damage at TDZ.  相似文献   

10.
应用模型试验的方法,研究了表面粗糙度对立管涡激振动响应特性的影响规律,对不同粗糙度条件下立管所受拖曳力、升力、端部张力、漩涡泄放频率、结构振动响应频率、位移响应等参数的变化规律进行了对比分析。结果表明:与立管横向振动相比,立管流向振动更早出现锁定现象,因此当折合速度较低时,立管流向振动的涡激振动响应要大于横向振动。立管张力均存在两个峰值频率,其中一个峰值频率为主导频率,与拖曳力主导频率吻合,由流向涡激振动所产生;另一个峰值频率为主导频率的一半,与升力主导频率吻合,由横向涡激振动所产生。因此可以看出:横向涡激振动与流向涡激振动通过张力作用而相互影响。与光滑立管相比,表面粗糙度降低了立管的涡激振动位移响应,减小了涡激振动的锁定区域,但提高了漩涡泄放频率。对于不同粗糙度下的粗糙立管,随着粗糙度的增加,立管的锁定区域开始点逐渐提前,锁定结束点逐渐推迟,锁定区域逐渐变宽。  相似文献   

11.
Slender subsea structures like pipelines, jumpers and umbilicals when exposed to currents may experience vortex-induced vibrations (VIV), which can shorten their fatigue life and increase the risk of structural failure. In the present study, flow around different configurations of a piggyback pipeline close to a flat seabed has been investigated using the two-dimensional (2D) Unsteady Reynolds-Averaged Navier Stokes (URANS) equations with the k − ω Shear Stress Transport (SST) turbulence model. The Reynolds number (based on the free stream velocity and large cylinder diameter) is equal 3.6 × 106 corresponding to upper-transition regime. The drag forces acting on the cylinders and base pressure coefficient value are well predicted by the present simulations, while the other hydrodynamic quantities (root-mean-square lift coefficient, Strouhal number) are predicted reasonably well as compared to published experimental data. The piggyback pipeline in the present study is modeled as two circular cylinders with a diameter ratio d/D = 0.2 (D denoting diameter of the large cylinder, d is diameter of the small cylinder). These two cylinders are clamped together at a distance G/D = 0.2. The two rigidly coupled cylinders are elastically supported and free to vibrate in two degrees of freedom. The effects on the vibration amplitudes and hydrodynamic forces are analyzed. The flow structures around the cylinders are investigated to explain the variations in observed structural responses. Depending on the angular position (α) of the small cylinder, the lock-in regime is narrower (α = 0°) or significantly wider (α = 180°) when compared to that of a single cylinder.  相似文献   

12.
Multiple side-by-side cylinders are widely employed in many engineering applications. Consequently, flow-induced vibrations (FIV), which have a significant influence on structural reliability, have drawn considerable concern from many investigators. Due to the complicated wake interactions behind the cylinders, the hydrodynamic characteristics of multiple side-by-side cylinders subject to FIV are obviously different from those of a single cylinder. Hydrodynamic force coefficients play an important role in evaluating structural reliability and predicting fatigue damage. However, few relevant investigations have been performed on hydrodynamic force coefficients of multiple side-by-side flexible cylinders, which require further research. In this paper, the hydrodynamic force coefficients of three and four side-by-side flexible cylinders with a spacing ratio of 6.0 are obtained by an inverse analysis method based on the oscillation displacements. In the resonance regions, the hydrodynamic force coefficients of multiple cylinders exhibit variation trends similar to those of a single cylinder, especially at higher reduced velocities. In the mode switch regions, relatively large deviations exist between the coefficients of multiple cylinders and single cylinder. The inner cylinder in the three-cylinder system shows prominently distinctive behaviour compared with the outer two cylinders. For the four-cylinder system in a side-by-side arrangement, the outer two cylinders show relatively slight differences between each other compared with the inner two cylinders.  相似文献   

13.
娄敏  冯健  王艳红 《船舶工程》2019,41(7):145-151
顺应式垂直通路立管(CVAR)是目前处于研究阶段的一种新型的立管类型,在海流作用下产生涡激振动,在平台垂荡运动作用下产生参数激励振动。为了研究参数激励的影响,本文引入尾流振子模型模拟漩涡脱落对立管的作用,同时考虑浮式平台升沉运动产生的参数激励,建立了CVAR参激-涡激联合振动方程,获取联合作用下的动力响应,并与纯涡激振动响应进行对比。结果表明,在相同的流速下CVAR中部涡激振动幅值最大,流速的增大会导致涡激振动的频率增大,发生高阶锁振,高阶锁振振动幅值比低阶锁振振动幅值小。考虑参数激励之后,较纯涡激振动而言,立管的振动幅值增大;当参激频率与涡激振动频率接近时,立管的振动幅值最大。  相似文献   

14.
Vortex-induced vibrations of a rigid circular cylinder were studied by constructing a theory based on a wake oscillator model under quasisteady approximations, thereby evaluating vortex-induced hydrodynamic forces acting on the cylinder. A lock-in limit line representing the boundary for the occurrence of frequency lock-in was also theoretically derived. Hydrodynamic forces in forced oscillation problems estimated by the theory were compared with measured ones. Although some discrepancies were found, particularly in cases with high-frequency oscillations, good agreement was achieved in most cases. Accordingly, we conclude that the present theory captures well real phenomena in the wake downstream of a cylinder subjected to a flow.  相似文献   

15.
A method to identify vortex-induced forces and coefficients from measured strains of a Steel Catenary Riser (SCR) undergoing vessel motion-induced Vortex-induced Vibration (VIV) is proposed. Euler–Bernoulli beam vibration equations with time-varying tension is adopted to describe the out-of-plane VIV responses. Vortex-induced forces are reconstructed via inverse analysis method, and the Forgetting Factor Least Squares (FF-LS) method is employed to identify time-varying vortex-induced force coefficients, including excitation coefficients and added mass coefficients. The method is verified via a finite element analysis procedure in commercial software Orcaflex. The time-varying excitation coefficients and added mass coefficients of an SCR undergoing vessel motion-induced VIV are investigated. Results show that vessel motion-induced VIV is excited at the middle or lower part of the SCR and in the acceleration period of in-plane velocity, where most of the excitation coefficients are positive, while during the deceleration period, the excitation coefficients becomes too small to excite VIVs. Parameter γ [1] has strong correlation with excitation coefficients. In addition, time-varying tensions contribute significantly to the variations of added mass coefficients under the condition that the ratio of dynamic top tension to pretension exceeds the range of 0.7–1.3. Moreover, chaotic behaviors are observed in vortex-induced force coefficients and are more evident with the increase of vessel motion velocity. This behavior may attribute to the randomness existing in in-plane velocity and its coupling with out-of-plane vibrations.  相似文献   

16.
从圆柱涡激振动数值模拟结果的精度及可信度的角度出发,应用弱耦合算法分析时间步长选取对弹簧支撑低质量比圆柱涡激振动响应结果的影响.计算选取自激振动幅值分支的三个代表性流速,比较不同时间步长下响应结果.比较分析表明:在幅值响应的初始分支和下端分支段,存在最优的时间步长,使得计算效率最高,最接近实验现象;而在幅值响应的上端分支,数值结果要低于实验值,且相位角对求解时间步长非常敏感.  相似文献   

17.
根据牛顿第二定律,对鹰式波浪能装置多个浮体进行了力学分析,基于微波理论,通过每个浮体之间三种模态的运动耦合,建立了流体力、阻尼力、铰接力、静水回复力等内外力之间的力学方程组。通过以运动浮体为边界条件求解多个浮体的水动力学参数,代入方程组中计算求得最优外加阻尼和最优俘获宽度比,从而优化设计方案,得到此时各浮体在纵荡、垂荡和纵摇三种运动模态下的位移幅值,以及阻尼力、铰接力、液压缸运动速度等相关参数。研究成果为鹰式波浪能装置的设计及制造提供了理论参考和依据。  相似文献   

18.
The finite element method was employed to solve the N-S equation.Incorporated with the vibration equa- tion,the vortex-induced vibration of the circular cylinder is studied by an Arbitrary-Lagrangian-Eulerian(ALE)al- gorithm.The Reynolds number based on the cylinder diameter and the undisturbed flow velocity ranges from 90 to 150. The motion of the cylinder was modeled by a spring-damper-mass system.The numerical model has been validated by comparison with the experimental data in literature.The"lock-in"and"beating"phenomena were successfully repro- duced in the numerical test.  相似文献   

19.
This study carried out an experiment to develop a renewable energy system utilizing vortex induced vibration (VIV) that can drive generators even in weak flow conditions. In our experimental setup, the translation motions of a cylinder undergoing VIV and a linear-type generator (coil and magnet) are connected through a rotational machinery, which enables us to apply the principle of leverage, leading to power generation even by small excitation force acting on the cylinder. The measurement shows that the present system performs optimally under the lock-in and upper branch conditions, and that there exists an optimum length of the lever of electromagnetic moment on a center of the rotation. Efficiencies of primary (from flows to the VIV) and secondary (from the VIV to electricity) energy conversions are estimated to show that the primary one is not enough high. We thus propose a few directions to improve it.  相似文献   

20.
块体形状对水流拖曳力的影响   总被引:5,自引:1,他引:4  
在计算块体受到的水流拖曳力时,常借鉴针对球体所提出的公式,然而它并不能客观地反映出块体形状对拖曳力产生的影响。文中将块体形状概化为长方体,通过水槽试验测量了水流作用下不同尺度的大颗粒块体受到的水平拖曳力,研究了块体形状对水流拖曳力的影响,并提出了考虑块体形状影响的拖曳力计算公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号