首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
路面特性对车辆振动影响规律研究   总被引:11,自引:1,他引:11  
对软路面上车辆的扭转、垂直和纵向振动进行了研究,首先对振动车辆进行单因素(路面不平度、胎压、路面抗压强度和牵引负荷)分析,找出对车辆振动影响显著的因素及影响规律,在此基础上对影响振动的多因素进行正交试验,分析交互作用对车辆振动的影响规律。同时,对不同路面条件下振动进行研究分析。随着路面波形频率、路面抗压能力、轮胎气压和牵引负荷的增加,车辆扭转、垂直和纵向振动增加。对于垂直振动、扭振和纵向振动,其主要影响因素各不相同。  相似文献   

2.
考虑车辆位置影响的风-车-桥系统耦合振动研究   总被引:1,自引:0,他引:1  
风-车-桥耦合振动系统中车辆位于桥道的气动绕流之中,车辆所受气动力与车辆位置密切相关。首先测试了车辆位置对车辆及桥道气动力的影响,建立了空间耦合的风-车-桥系统分析模型。以京沪高速铁路南京长江大桥为工程背景,采用自行研发的桥梁结构分析软件BAN-SYS,对比分析了车辆位于桥道迎风侧和背风侧时风-车-桥系统的耦合振动情况。分析结果表明,风-车-桥系统耦合振动分析中考虑车辆位置的影响是必要的。  相似文献   

3.
为了研究车辆动荷载时域特征,现场实测高、低等级两种道路的路面平整度指标,利用自主研发的车辆轮轴动荷载测量仪进行现场试验,测试重型货车和小型货车在不同速度下的轮轴竖向振动加速度,并对振动加速度标准差进行分析。结果表明,车辆轮轴振动加速度标准差随着速度的增加而增加,小型货车的振动加速度标准差小于大型货车;车辆装载质量对轮轴振动加速度的影响较大;平整度对车辆振动加速度有一定影响,车辆空载时影响较小,满载时影响较大。  相似文献   

4.
以U型梁为主要研究对象,建立车辆-桥梁耦合动力分析模型,研究了车速、车辆类型和钢弹簧浮置板对高架U型梁桥动力响应的影响,分析了车辆和桥梁结构的动力特性,并对地铁列车通过U型梁桥系统时的行车安全性进行了评估。计算结果表明:车辆在50~100 km/h速度运行时,均满足行车安全性的要求,车辆振动会随着速度的增加而增加;从U型梁的行车安全性角度来分析,选取A型车比B型车更为合理;加入钢弹簧浮置板后,可减小桥梁竖向位移和竖向加速度,但会增加列车振动响应,在钢弹簧浮置板设计过程中,需兼顾车辆和桥梁的运营安全性;改变钢弹簧的刚度对桥梁振动响应的影响较小。  相似文献   

5.
本文建立了能全面反映汽车振动特性的三维七自由度车辆振动模型,应用MATLAB开发了相应的车辆平顺性模拟计算程序:该程序对样车的司机座椅、货厢中心、距货厢后板300mm三处的振动进行模拟,模拟数据与实验数据基本吻合,证明所建立的车辆振动模型的正确性及车辆振动模拟计算程序的有效性。实践表明,应用该程序分析和预测车辆平顺性是切实可行的。  相似文献   

6.
为研究桥面非平稳随机激励对车桥耦合系统的影响,采用滤波白噪声法生成单轮桥面非平稳随机激励时域模型,结合车辆前后轮的时间滞后和左右轮的相干关系,生成车辆六轮相关的桥面非平稳随机激励样本并验证了样本的有效性。分析一座3×30 m连续T梁桥和一辆三轴重载汽车在非平稳桥面激励下的车桥耦合振动响应,现场实测桥面不平度,并采用传统蒙特卡罗法对车辆和桥梁的振动响应进行计算。研究结果表明:根据车辆六轮间的时间滞后关系和相干函数关系所建立的桥面非平稳随机激励模型满足目标相干函数和功率谱密度,且时间滞后关系明确,模型有效可靠;当车辆加速行驶时,因桥面不平顺引起的非平稳随机激励信号的幅值随速度的增大而增大,非平稳激励下的桥梁和车辆振动响应大于平稳激励所产生的振动响应;非平稳激励对桥梁振动响应的均值影响很小,但对车辆振动响应均值影响较大,车辆振动对桥面随机激励更敏感;非平稳激励对车辆和桥梁振动响应标准差的影响较大,且振动响应标准差随着车辆加速度的提高而增大;研究车桥耦合振动很有必要考虑车辆非匀速行驶而引起的桥面非平稳随机激励,建议车辆匀速通过桥梁,尽量避免在桥上加速行驶。  相似文献   

7.
车辆的振动舒适性不仅影响乘客的乘坐体验,对于雷达车等装载精密设备的特种车辆而言,车辆的振动噪声还会影响雷达的正常工作或降低指挥官间的沟通质量。车身附加结构阻尼是改善车辆乘坐舒适性的一种有效措施,以某类雷达车车身地板为研究对象,详细研究了附加结构阻尼层的布置优化方法,认为拓扑优化设计方法是附加结构阻尼层优化布置的有效方法。在此基础上进一步研究了附加自由阻尼层的局部约束化优化方法,探讨了局部约束化对自由阻尼层性能的影响。  相似文献   

8.
鉴于车辆簧上质量的振动和车轮的振动耦合,特别是转向工况下,车轮转向角对车辆侧倾的影响,为减小车辆的侧倾并有效抑制车辆的振动,建立了带主动悬架的整车模型,并运用微分几何理论设计了侧倾及减振控制律,对整车模型进行解耦。经过解耦后,簧上质量的俯仰、侧倾和垂向运动互相独立;车轮转角对车辆侧倾的影响得到有效的抑制。仿真结果表明,采用微分几何解耦后,车辆的侧倾角、俯仰角和垂向振动以及横摆角速度的超调量皆大幅度地减小,车辆乘坐的舒适性和转向的稳定性显著提高。  相似文献   

9.
连续梁桥与车辆耦合振动系统冲击系数的研究   总被引:9,自引:1,他引:9  
将连续梁桥简化为平面梁模型,利用模态分析的方法,计算了在移动车辆振动荷载作用下,连续梁桥的动力特性。讨论了跨径和车辆移动速度变化时,车辆振动系统对连续梁桥挠度冲击系数和弯矩冲击系数的影响,比较真实地揭示出连续梁桥结构在车辆荷栽作用下的动态受力与变形本质。  相似文献   

10.
介绍振动诊断技术在汽车变速器上的应用,简单分析了变速器常见故障对振动波形的影响,对于大型车队和机械化施工企业的工程车辆的技术管理有一定的参考。  相似文献   

11.
对市政道路进行减隔振设计,需先研究交通车辆荷载引起的道路振动特性。实测了广州市南大路和番禺大道北辅路在四种车辆和混合车流时的路面振动加速度,并对测试数据进行峰值、频谱、VLz振级分析,研究车辆荷载引起的市政道路振动规律。结果表明:道路振动加速度响应幅值与汽车轴重、行驶速度、道路结构刚度密切相关,随着汽车轴重、车辆行驶速度和道路刚度的增大而增大;汽车荷载激励以竖向振动为主,频率主要在5.0~40.0 Hz之间,能量集中于10.0~20.0Hz范围。  相似文献   

12.
通过在摩托车整车性能测试系统上跑车,对HN125T-2摩托车发动机与车架刚性连接进行振动信号测试,分析发动机振动对车辆动态性能的影响,提出发动机与车架弹性连接的方案,设计合理的结构装置,并用相同实验方法和数据处理方法进行振动信号测试验证,最大限度地减小了发动机振动对车辆动态性能的影响。  相似文献   

13.
将曲线通过的车辆和曲线连续梁桥分为2个由非线性轮轨接触力所联系的振动子系统,运用车桥耦合振动理论,建立铁路车辆曲线通过模型动力方程、曲线梁桥的动力模型及其动力方程,应用基于激励非线性振动的数值算法,编制曲线梁桥车桥耦合振动分析软件VCBID,重点讨论了不同曲率半径对曲线连续梁桥车桥耦合振动的影响。分析结果表明在曲线梁桥的车桥耦合振动分析中应计入曲率半径的影响。  相似文献   

14.
鉴于车辆簧上质量的振动和车轮的振动耦合,特别是转向工况下,车轮转向角对车辆侧倾的影响,为减小车辆的侧倾并有效抑制车辆的振动,建立了带主动悬架的整车模型,并运用微分几何理论设计了侧倾及减振控制律,对整车模型进行解耦。经过解耦后,簧上质量的俯仰、侧倾和垂向运动互相独立;车轮转角对车辆侧倾的影响得到有效的抑制。仿真结果表明,采用微分几何解耦后,车辆的侧倾角、俯仰角和垂向振动以及横摆角速度的超调量皆大幅度地减小,车辆乘坐的舒适性和转向的稳定性显著提高。  相似文献   

15.
对车辆进行动态称重时,称重结果与车辆的行驶方式有很大关系。车辆行驶过程中产生的不规则振动噪声会使动态称重难度增加,往往造成称量结果与车辆实际重量不符。介绍小波变换降低振动噪声的方法,并将其用于动态称重,以研究降低振动噪声对动态称重精度的影响。  相似文献   

16.
基于复杂场地及行车条件的交通振动影响研究   总被引:1,自引:1,他引:0  
采用四自由度车辆振动模型,全面而系统地预测多种条件下的交通振动影响程度,并从振源条件、波的传波途径、传播介质的材料特性选用参数进行计算场地的振动响应。同时,将车辆振动理论与考虑粘性边界条件的有限元法相结合,提出了一种考虑行车条件、路面平整度以及复杂场地条件下振动波传播路径影响的交通振动预测方法。工程实例的分析结果表明,随着车辆载重增大、行车速度提高以及路面平整度下降,车辆轮胎击地反力有一定程度的增大;隔振沟可以有效地控制交通振动引起的加速度和速度响应,但对减轻位移响应效果不明显。  相似文献   

17.
用结构动力学理论,建立了车辆过桥时车桥耦合振动响应计算模型.采用Newmark-β积分法获得车桥耦合振动响应数值解.讨论了车辆、车速、桥面不平顺、桥的阻尼等因素对桥梁冲击系数的影响.分析表明,在设计中应综合考虑这些参数对车桥耦合振动的影响.  相似文献   

18.
姜乃利  王岩松 《客车技术》2007,(4):20-23,27
基于8自由度的非线性车辆动理学模型,以四轮相关滤波白噪声路面为系统输入,对四轮车辆的随机振动过程进行了计算机时域模拟和实验验证,进而分析了在不同车速条件下钢板弹簧和减震器的非线性因素对车辆平顺性的影响,深入揭示了车辆非线性振动过程的本质。  相似文献   

19.
近年来,随着公路不断改革,高等级公路迅速增加,车辆的行驶速度随之提高,乘客和驾驶员对车辆行驶中的振抖和噪声问题也日趋敏感,车辆行驶中产生振动和噪声的主要原因是修理工艺不当、装配失误、零件变形、长期失修等导致高速旋转件失去平衡。车辆行驶中的振动和噪声不仅降低了乘坐舒适性,增加了零部件的磨损和早期损坏,且降低了车辆的传动效率,甚至危及车辆和人身安全。为减轻车辆行驶中的振动和噪声,延长车辆的使用寿命,维修中必须对不平衡的高速旋转件进行校验,选择正确的修理工艺,按正确的顺序装配,严格执行装配技术要求,将不平衡产生的振动和噪声控制在允许范围之内,为此着重阐述汽车主要高速旋转件在修理过程中引起的不平衡原因与检修技术。  相似文献   

20.
为了研究风-车-桥耦合系统中车-桥系统的振动特性及车辆行车安全特性,得到车辆在大跨度桥梁上行驶时车辆的安全行驶临界风速,对车辆通过大跨斜拉桥时车辆的气动特性、车-桥系统的振动特性及车辆的行车安全特性进行研究。研究风荷载作用下车辆在大跨度桥上行驶时车辆的行车安全临界风速,分析车辆行驶速度、路面状况及风偏角对车辆行驶安全临界风速的影响。车-桥系统的耦合振动会导致车-桥系统周围风场的特性发生变化,风场的变化会导致下一时刻车-桥系统的受力状态发生改变。考虑车辆运动及车-桥系统的振动与车-桥周围风场的相互影响,基于双向流固耦合数值模拟,建立风-汽车-桥梁空间耦合振动数值分析模型。通过风-车-桥耦合系统三维数值分析,得到了风荷载作用下车辆在大跨度桥上行驶时不同状况下车辆的倾覆及侧滑临界风速。结果表明:基于双向流固耦合数值分析能够较精确地模拟风-车-桥耦合振动系统;风荷载作用下车辆在桥上行驶时,车辆的振动特性主要由汽车-桥梁系统决定,车-桥系统的振动特性受自然风荷载影响;侧向风荷载作用下车辆的倾覆力矩系数及侧向力系数并不一定为最大值,车辆在大跨径桥上行驶受侧向风荷载作用并不一定为行车安全分析的最不利状况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号