首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
基于带有芯钢管的钢管混凝土节点承载力试验研究结果,运用有限元软件 ANSYS 建立带有芯钢管的钢管混凝土节点核心区有限元分析模型,进行节点竖向承载力数值分析,与试验结果进行了对比,并对影响钢管混凝土节点核心区承载能力的因素进行了分析.研究结果表明:有限元模型计算所得极限承载力与试验实测结果吻合较好;混凝土强度、芯钢管强度、外围纵筋和箍筋的强度均对节点核心区的竖向承载力影响较大.  相似文献   

2.
钢管自密实混凝土轴压受力机理试验研究   总被引:1,自引:1,他引:0  
通过钢管混凝土短柱轴压试验,研究不同混凝土强度等级、钢管中部是否开小孔或不同高度的横槽以及不同加载方式对钢管自密实混凝土极限承载力、荷载—变形曲线和荷载—横向变形系数曲线的影响,探究钢管自密实混凝土的轴压受力机理。试验结果表明:当钢管与混凝土轴压同时受荷时,采用不同尺寸的应变片或中部某标距范围内的位移计测试可准确记录钢管的轴向变形;随着混凝土强度等级的提高,钢管自密实混凝土极限承载力不断增大,而剩余承载力基本不变;钢管与混凝土是否同时受荷对极限承载力和剩余承载力影响不大;钢管开小孔,钢管自密实混凝土轴向压缩变形性能减弱,钢管轴向承压能力减弱,而极限承载力和剩余承载力基本不变;钢管开槽,其受力机理发生变化,变形性能减弱,极限承载力降低,钢管更多地参与横向受拉工作。  相似文献   

3.
研究目的:为研究耐候钢管混凝土的受力性能,本文结合4根耐候钢管混凝土轴压短柱试验展开研究,采用ABAQUS有限元软件进行模拟计算,并结合试验和有限元方法分析比较耐候钢管混凝土轴压短柱与普通钢管混凝土轴压短柱力学性能的差异。研究结论:(1)耐候钢材拉伸性能试验表明耐候钢材与碳素钢的力学性能相似,文中采用的钢材本构关系对耐候钢适用;(2)增加内约束箍筋后,对耐候钢管混凝土轴压短柱的极限承载力、延性以及钢管对混凝土的约束作用均有较大幅度的提高;(3)耐候钢管混凝土短柱试验研究、有限元分析结果均表明耐候钢管混凝土轴压短柱静力力学性能与钢管混凝土试件无显著差异;(4)本研究成果可为耐候钢管混凝土短柱力学性能研究提供借鉴。  相似文献   

4.
针对方形钢管混凝土柱与钢梁穿芯螺栓-加劲端板节点在反复荷载作用下易发生螺栓松动甚至断裂的问题,提出外端板加强式柱梁焊接节点。基于外端板加强式钢管混凝土柱-钢梁焊接节点抗震性能试验结果,运用ABAQUS对其抗震性能进行有限元分析,并与试验结果进行对比,进而对影响该类型节点受力性能的因素予以分析。研究结果表明:有限元分析的节点破坏模式、滞回曲线与试验结果吻合较好;加劲肋对节点的破坏模式、承载力与变形能力影响较大;柱子轴压比与钢梁腹板厚度对节点的承载力与变形能力有一定影响;混凝土强度与外端板厚度对节点承载力与变形能力影响较小。试验研究与有限元分析结果均表明,该类型节点承载力与变形能力等抗震性能指标良好,可在地震设防区应用。  相似文献   

5.
钢管活性粉末混凝土的超高强度能有效减小构件的截面尺寸,减轻结构自重,在高层建筑和桥梁建设中都有良好的应用前景。考虑实际工程中钢管活性粉末混凝土结构可能出现的其中2种加载方式——全截面加载及核心混凝土加载,进行不同加载方式对钢管活性粉末混凝土轴压短柱受力性能影响的试验研究。试验结果表明,2种加载方式下试件的应力发展过程不一样,但极限状态时钢管切向应力均接近钢材的屈服强度,纵向应力均接近0,试件的极限承载力相差不大,但套箍作用和刚度有一定的差异。讨论2种不同加载方式作用下试件的破坏机理、极限承载力公式及荷载变形情况。利用有限元软件ABAQUS建模分析并与试验结果进行对比。  相似文献   

6.
钢管混凝土(单圆管)肋拱面内极限承载力的参数分析   总被引:6,自引:0,他引:6  
应用双重非线性有限元分析方法对钢管混凝土(单圆管)肋拱受力全过程的非线性性能与极限承载力进行了参数分析。分析的参数有矢跨比、长细比、含钢率以及加载方式。分析结果可供提出极限承载力实用算法和工程应用参考。  相似文献   

7.
约束混凝土可以有效改善混凝土的承载性能和延性,被广泛应用于工程实践中。针对轴压作用下多重箍筋约束混凝土柱的极限承载力计算问题,参考Sheikh提出的有效约束模型理论,建立外方内双螺旋箍筋约束混凝土柱轴压下的约束理论模型。并以约束混凝土计算理论为基础,采用叠加原理和统一强度理论,推导该约束形式下混凝土柱的轴压承载力计算方法,应用有限元软件ABAQUS对该类新型约束混凝土柱进行数值模拟计算。结果表明:外方内双螺旋箍筋约束混凝土柱轴压承载力的理论计算值与模拟值吻合良好,且理论值偏于保守,多重约束混凝土的承载性能明显优于普通箍筋约束混凝土柱的承载性能。  相似文献   

8.
FRP布约束混凝土圆柱轴心受压性能非线性有限元分析   总被引:1,自引:0,他引:1  
采用非线性分析程序ABAQUS,考虑混凝土在三轴状态下的非线性行为及纤维增强材料(FRP)布对混凝土的被动式约束,对轴压下FRP布约束混凝土圆柱试件的受力行为进行分析,研究FRP布与混凝土的相互作用以及纤维含量对约束混凝土极限强度和极限应变的影响。结果表明:非线性有限元分析结果与实验结果吻合良好,非线性有限元分析可较好预测FRP布约束混凝土柱的轴心受压性能;随着FRP布层数的增加,FRP布约束混凝土的极限强度和极限应变提高,FRP布对混凝土的约束作用明显增强;FRP布对混凝土约束力主要在混凝土屈服后发挥。根据实验和有限元分析结果,得到约束混凝土极限强度和极限应变与纤维约束特征值的关系。  相似文献   

9.
通过8根矩形钢管混凝土梁的试验,研究分析了矩形钢管混凝土梁的受力特点和承载能力,结果表明:矩形钢管混凝土梁具有优良的变形能力、较高的承载力和稳定的后期承载力与变形性能,钢与混凝土得到了充分利用。将矩形钢管混凝土梁的受力性能与钢筋混凝土梁和钢梁的受力性能进行了对比分析,矩形钢管混凝土梁在承载力、变形能力、经济效益等方面较之其他梁有一定的优势。  相似文献   

10.
圆钢管混凝土轴压短柱受力机理影响因素分析   总被引:5,自引:0,他引:5  
根据钢管混凝土轴压短柱弹塑性全过程分析理论,在试验验证的基础上,对钢管混凝土轴压短柱受力机理进行数值仿真,分析了钢管混凝土加载过程中各内力随纵向应变的变化情况,探讨了含钢率、钢材屈服强度和混凝土强度对钢管混凝土力学性能的影响。研究结果表明:钢管混凝土在受荷过程中,核心混凝土由于受到钢管的约束其纵向应力有较大提高,延性得到显著提高,钢管为混凝土提供径向约束,但其纵向应力大幅度降低;在其他条件相同的情况下,含钢率和钢材屈服强度越高,则钢管混凝土轴压短柱套箍作用越强,承载力越高,延性越好;而混凝土强度越高,则试件套箍作用越弱,延性越差,但承载力越高。  相似文献   

11.
应用 ABAQUS建立了圆钢管活性粉末混凝土( reactive powder concrete,简称 RPC)长柱有限元模型,计算得到16个试件的荷载-变形曲线和极限承载力,极限承载力计算结果与已有试验结果吻合较好。研究长细比和套箍系数对圆钢管RPC长柱轴心受压极限承载力的影响,并对长柱和短柱的受力性能进行了比较。研究结果表明:不同长细比试件的荷载-变形曲线在弹性阶段均吻合良好,在弹塑性阶段出现破坏以后,曲线均有不同程度的偏差;不同套箍系数试件弹性阶段的荷载-变形曲线及极限承载力均区别不大,套箍系数较大的圆钢管 RPC 长柱后期强度提高较大,且延性较好;圆钢管 RPC 短柱的弹性阶段比长柱有所延长,极限承载力亦显著增加;短柱破坏表现为核心混凝土破坏、钢管屈服,长柱破坏表现为整体失稳。  相似文献   

12.
陈宝春  秦泽豹 《铁道学报》2006,28(6):99-104
根据试验研究与双重非线性有限元计算分析结果,提出钢管混凝土(单圆管)肋拱面内极限承载力的等效梁柱法。分析讨论了等效梁柱法的等效长度、作用力选取和钢管混凝土梁柱极限承载力计算方法的选用。分析结果表明,等效梁柱法中钢管混凝土梁柱的极限荷载宜采用DL/T规程;对于非对称荷载。等效长度可取0.72S(S为半跨拱轴线弧长)、采用拱脚截面内力作为作用力;对于对称荷载,等效长度可取0.62S、拱顶截面内力为作用力。与采用双重非线性有限元计算的极限承载力的比较表明,等效梁柱法能基本反映钢管混凝土(单圆管)肋拱极限承载力的基本规律,可供进一步研究与工程应用参考。  相似文献   

13.
高温后钢管高性能混凝土轴压短柱力学性能研究   总被引:7,自引:0,他引:7  
通过48根高温冷却后钢管高性能混凝土(C80)短柱的试验研究,探讨了火灾温度、恒温持续时间、含钢率等因素对高温后钢管高性能混凝土短柱极限强度、峰值应变、平台强度等的影响,并对构件高温后的工作机理进行了较深入的分析。试验表明,随着火灾温度的升高和恒温时间的增加,高温后钢管高性能混凝土短柱极限承载力整体上呈降低趋势,且温度高于500℃后,其下降速度更快,而在其他条件相同时,高温后钢管高性能混凝土短柱的极限承载力随含钢率增加略有提高。根据试验结果,建立了高温后钢管高性能混凝土组合材料应力 应变关系曲线计算公式和极限强度、峰值应变、平台强度、极限承载力等经验计算公式,其计算结果与实测结果吻合较好。  相似文献   

14.
进行4种加载方式对钢管混凝土轴压长柱和中长柱试件受力性能影响的试验研究,并与轴压短柱试验进行对比和分析。结果表明,加载方式对长柱中截面应力的影响较小,但对刚度影响较大,从而影响稳定极限承载力,其中初应力对长柱的极限承载力降低的影响比短柱明显,而与之相反,对于荷载仅施加于钢管之上的长柱,其极限承载力反而大于同样加载的短柱。随着长细比的增大,加载方式对试件套箍作用的影响有减小的趋势,且受力性能的差异也逐渐缩小。加载方式对钢管混凝土中长柱受力性能的影响介于短柱与长柱之间,但与短柱更接近。最后,讨论不同加载方式作用下长柱和中长柱的极限承载力计算方法。  相似文献   

15.
为研究圆形配筋钢管混凝土桥柱的受压力学性能,对中空圆钢管柱、圆钢管混凝土(CFT)柱及配筋圆钢管混凝土(RCFT)柱进行轴压试验,探讨混凝土强度、钢筋配置的数量和位置、加强肋、钢管的径厚比等对配筋圆钢管混凝土柱的承载力和变形性能等力学性能的影响。研究表明:(1)对于CFT柱,柱破坏时核心高强混凝土表现出明显的脆性,柱的极限受压承载力提高,变形性能降低。(2)钢筋的配置提高了核心混凝土的抗剪承载力,柱破坏时核心混凝土未发生剪切破坏。RCFT柱比中空钢管柱和CFT柱具有更高的承载力和更优的变形性能。(3)带加强肋的柱破坏时核心混凝土与加强肋密不可分,加强肋对于钢管和核心混凝土的一体化性能有明显的促进作用,加强肋可提高约束效果,柱的极限受压承载力和延性都有所提高。(4)钢管径厚比越大,对核心混凝土的约束效果越好。  相似文献   

16.
对酸雨腐蚀后的9根方钢管混凝土进行偏心受压试验研究,主要考虑偏心距、混凝土类型和酸雨腐蚀率变化对试件力学性能的影响。研究表明:整体上酸雨腐蚀试验与法拉第电化学腐蚀定律吻合较好,随着腐蚀率的增加,试件极限承载力、前期刚度及延性均有所降低;混凝土类型对试件破坏形态、极限承载力和前期刚度影响不大,钢管再生混凝土的延性略差于同等条件下的钢管普通混凝土;随着偏心距的增加,试件达到峰值荷载前竖向相对压缩率增大,刚度减小。采用有限元软件对所有试件进行建模分析,整体上有限元建模方法能够较好模拟酸雨环境下方钢管再生混凝土偏心受压全过程,计算所得试件的极限承载力与试验结果较吻合。  相似文献   

17.
介绍并验证了采用ABAQUS有限元软件计算钢管混凝土短柱极限承载力的方法,计算分析了不同脱空率下钢管混凝土短柱破坏模式及极限承载力,对比分析了在脱空部位设PBL连接键后脱空钢管混凝土短柱的受力性能。结果显示:随着脱空率的增大,钢管混凝土短柱的极限承载能力不断下降;在脱空部位设PBL连接键后,钢管混凝土的破坏模式发生变化,破坏阶段的承载能力有所提高,且当脱空率在0~4%或大于16%范围内时,PBL连接键对脱空钢管混凝土短柱极限承载力起增强作用,而当脱空率约在4%~16%范围内时,设PBL的钢管混凝土短柱极限承载力反而低于原脱空钢管。  相似文献   

18.
应用连续介质力学理论,建立圆钢管套箍混凝土同心圆柱体混凝土受压计算模型,建立圆钢管套箍混凝土组合弹性模量理论计算公式和组合应力—应变关系全曲线理论表达式。编制相应的计算程序,进行圆钢管套箍混凝土受力全过程数值分析。从圆钢管套箍混凝土加载过程的钢管环向应力—应变关系以及核心混凝土的轴向应力—应变关系、径向应力—应变关系等方面,探讨圆钢管套箍混凝土和圆钢管混凝土力学性能之间的差别,并用试验结果验证。分析结果表明:与钢管混凝土力学性能相比,钢管套箍混凝土中核心混凝土的径向压应力、纵向强度和钢管环向拉应力增加;圆钢管套箍混凝土将套箍约束作用发挥至最大,且其极限承载力和剩余承载力高,延性好,但组合弹性模量偏小。  相似文献   

19.
利用单一组合材料线弹性梁单元建立钢管混凝土拱桥稳定极限承载力计算的有限元分析模型,并以压弯稳定承载力相关方程为基础,通过全面试验法和回归分析方法建立具有广泛适用性的钢管混凝土构件压弯稳定分析的齐次广义屈服函数。结合弹性模量缩减法,研究用于钢管混凝土拱桥稳定极限承载力计算的线弹性迭代方法。通过与试验结果及不同数值方法计算结果的对比分析表明:建立的齐次广义屈服函数能够克服传统广义屈服函数容易受荷载初始值影响的缺陷;通过弹性模量缩减法调整弹性模量实现结构内力重分布,利用线弹性迭代方法计算结构的极限承载力,克服了增量非线性有限元法的局限性,能够取得更高的计算精度和效率;钢管混凝土拱桥规范建议的稳定系数表达式具有良好的稳定性与适用性。  相似文献   

20.
为了分析高温后中空夹层钢管混凝土(简称CFDST)构件轴心受压力学性能,在试验验证的基础上,采用数值模拟的方法对高温后的轴压工作机理进行剖析,探讨温度、空心率、名义含钢率、内外钢管屈服强度及混凝土抗压强度对CFDST力学性能的影响。研究结果表明:随着构件曾经历温度的升高,极限承载力呈下降趋势;外钢管屈服强度对CFDST构件极限承载力的提高有显著影响,混凝土强度对提高常温阶段构件的极限承载力影响较大,但随着温度的升高,影响逐渐降低,空心率、内钢管的屈服强度对高温后CFDST构件极限承载力影响很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号