首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究高速铁路桥梁竖弯涡振对桥上列车行车安全舒适性的影响,以某大跨公铁两用斜拉桥和CRH2型动车组为背景,进行风-车-轨-桥耦合系统振动分析。基于ANSYS与SIMPACK联合仿真平台,引入桥梁涡激力数值模型,建立风-车-轨-桥耦合系统振动模型,对比10 m/s平均风速下主梁发生与未发生竖弯涡振时桥梁和列车的动力响应,并分析不同列车速度的影响。结果表明:竖弯涡振会加剧桥梁和列车的竖向响应,而列车的存在会使发生竖弯涡振时的桥梁竖向位移和加速度分别降低31.8%和42.4%,对主梁竖弯涡振具有一定的抑制作用;主梁发生竖弯涡振时列车行车安全性指标峰值和竖向舒适性指标(竖向加速度和竖向Sperling指标)峰值明显大于未发生竖弯涡振时,并均随着车速的增大而增大;当车速超过230 km/h时,列车轮重减载率超过安全限值0.6,当车速超过200 km/h时,桥上列车竖向加速度超过安全限值1.3 m/s2。  相似文献   

2.
基于列车脱轨能量随机分析理论,分析天兴洲主跨80 m连续梁桥上高速列车的走行安全性。提出桥梁抗脱轨安全系数计算式,计算该桥的抗脱轨安全系数。在列车不会脱轨的条件下,分析桥上列车走行舒适性。分析结果表明:列车以300 km/h以下车速通过该桥时不会脱轨,桥梁抗脱轨安全系数很大;列车走行舒适性指标均为合格以上。研究成果为桥梁设计提供了理论依据。  相似文献   

3.
为研究桥上风屏障局部破坏对桥梁列车行车安全性的影响,以某四塔公铁两用斜拉桥为背景,进行列车动力响应和行车安全性影响参数分析。推导列车通过风屏障破坏段时车辆和桥梁的风荷载,并通过桥梁和列车节段模型风洞试验,测得计算所需气动力系数;在此基础上建立风-车-轨-桥耦合振动模型,研究了风屏障破坏段长度、平均风速和列车车速对列车动力响应及行车安全的影响。结果表明:突风效应会导致列车横向位移达到最大值,遮风效应会使列车横向加速度达到最大值;随风屏障破坏段长度、平均风速和列车车速的增加,列车动力响应随之增加;风屏障破坏会增加列车的轮重减载率和脱轨系数,并且高风速下各节车辆在风屏障破坏段的脱轨系数差异较大;仅在风速不大于10 m/s时,列车可以180 km/h的车速安全通过风屏障破坏段。  相似文献   

4.
福平铁路闽江特大桥主桥设计   总被引:1,自引:0,他引:1  
福平铁路闽江特大桥主桥采用(110+198+110)m预应力混凝土连续刚构桥,主梁采用C60混凝土单箱单室变截面箱梁,三向预应力体系,为适应主梁产生的徐变变形,在箱梁内预留体外预应力钢束张拉条件;主墩采用双薄壁墩与主梁固结,基础采用16根2.8m钻孔灌注桩;主梁采用悬臂浇筑法施工,合龙顺序为先边跨后中跨。采用BSAS4.32软件对主桥进行结构静力计算,并对3种车型通过桥梁时的车桥耦合动力响应进行计算。计算结果表明:该桥在施工及运营阶段的刚度、强度均满足规范要求,桥梁具有良好的动力特性及列车走行性,列车通过桥梁时的安全性和乘坐舒适性均满足要求。  相似文献   

5.
将金山特大桥高墩大跨连续梁桥设计   总被引:3,自引:2,他引:1  
将金山特大桥主桥由一跨32m预应力混凝土T梁桥和(60.75+4×100+60.75)m预应力连续梁桥组成。预应力连续梁桥主梁采用单箱单室直腹板变截面箱形梁,设置三向预应力体系。采用恒载与1/2活载所产生的挠度之和对主梁反向设置预拱度。在各活动支座处设顺桥向水平预偏值。采用圆端形桥墩,1号墩为实体墩,2~6号墩为空心墩,均采用群桩基础。采用BSAS V3.76软件对主梁进行平面静力分析,采用桥梁博士软件分析箱梁截面横向受力并对3种车型通过桥梁时的车桥系统空间动力响应进行计算。计算结果表明:桥梁设计均满足规范要求,桥梁具有良好的动力特性及列车走行性,列车通过桥梁时的安全性和乘坐舒适性均满足要求。  相似文献   

6.
常泰长江大桥为主跨1176 m的双塔双索面公铁两用双层斜拉桥.为研究侧风作用下该桥的动力响应以及桥上高速列车的行车安全性,采用WT TBDAS V2.0软件建立风-车-线-桥耦合分析模型,分析不同风速及车速下单、双线CRH2列车通过桥梁时车辆和桥梁的动力响应.结果表明:桥梁主跨跨中横向位移和横、竖向加速度随风速增大而增...  相似文献   

7.
为研究重庆鹅公岩轨道专用悬索桥在遭受船舶撞击作用下,轨道车辆行车安全性与舒适性,采用桥梁结构分析软件BANSYS建立有限元模型,对桥梁在船撞力作用下的动力特性及车-桥耦合振动进行分析计算,并根据分析结果对行车安全性和舒适性作出评价。结果表明:船撞力的作用大幅增加了桥梁在横向的振动响应,并一定程度地增大了车辆的响应;但船撞力对车辆响应的影响远小于其对桥梁响应的影响,且列车的行车安全性和舒适性指标均满足要求。  相似文献   

8.
桥上列车横向摇摆力的随机分析   总被引:2,自引:0,他引:2  
将列车-桥梁视为一整体系统,由弹性系统动力学总势能不变值原理及形成矩阵的“对号入座”法则,建立列车-桥梁系统横向振动议程,以机车车辆轮对的人工模拟蛇行波为激振源,计算了列车-桥梁系统的横向振动动,算出了货物列车以80km/h车速通过4座不同跨度桥梁时的车辆及桥梁横向振动响应全过程(从机车进桥至车尾离桥)波形图,列车横向摇摆力和侧倾力的波形图,与按实测轮对蛇行波作为激振源输入的计算结果接近。分析这些计算结果,可以是出一些具有一定规律的现象。  相似文献   

9.
介绍了列车安全性、舒适性及平稳性的基本涵义及评价标准,并综合运用车辆动力学与桥梁结构动力学的研究方法,建立了车桥空间耦合模型,并用计算机模拟列车通过桥梁的情况,求得车桥动力响应,对高墩大跨度连续梁桥的列车走行安全性、舒适性及平稳性进行了计算和分析。  相似文献   

10.
为了研究某钢桁混凝土T构组合桥的行车性能及温度对其影响,用ansys建立该桥梁梁单元模型,进行极端温度工况下的变形计算,将温度效应引起的梁体变形和轨道不平顺叠加转换成系统激励,运用simpack软件进行车桥耦合动力响应分析,研究车速和温度对该桥梁的行车性能的影响。结果表明,该车桥系统动力响应随车速的提高而增大,其中脱轨系数变化量达到50%,但均满足规范限值,具有良好的安全性与平稳性。温度对桥梁的横向加速度产生明显影响,变化量达到76.9%。  相似文献   

11.
为研究列车与小半径曲线区段槽型梁桥的车桥耦合振动特征及机理,以位于半径为300m曲线上的铁路单线简支槽型梁桥为背景进行分析。采用ANSYS建立全桥空间有限元模型,在计算分析槽型梁桥动力特性的基础上,采用随机振动理论模拟列车通过曲线段桥梁的全过程,评估列车的走行性,分析槽型梁桥的车桥耦合振动响应特征并与实测结果进行对比。结果表明:C62货运列车以不高于40km/h的速度通过半径仅为300m的曲线区段桥梁时,具有良好走行性;槽型梁桥具有足够的竖、横向刚度;曲线段槽型梁桥的横向振动响应可分解为离心力引起的结构横向静态响应和车桥耦合振动引起的结构横向动响应两部分。  相似文献   

12.
黄河特大桥为神华大准铁路(重载铁路)增二线上跨度为(96+132+96)m的三跨预应力混凝土连续刚构桥,由于线路运能提升的需要,拟将C80B和KM70列车通行速度由60km/h提升至约80km/h。为对提速后的黄河特大桥进行适应性评估,分别采用光纤光栅应力传感器、挠度传感器及振动传感器对列车编组提速过程中的桥梁应力、挠度及振动响应进行监测分析,并分析了桥梁发生竖向共振时的列车临界速度。结果表明,当KM70列车以74km/h的速度通过桥梁时,列车激励频率与车-桥耦合体系的竖向有载频率接近,桥梁挠度变化幅度及应力幅较大,且动力系数超过规范值,由此判断桥梁发生了竖向共振。建议KM70列车不提速或提速前对桥梁进行减振处理,并采用车-桥耦合方法对桥梁竖向共振进行深入分析。  相似文献   

13.
闽江特大桥主桥孔跨采用(118+216+138+83)m预应力混凝土刚构连续梁。预应力刚构连续梁主梁采用单箱单室箱形截面。主墩采用圆端形空心桥墩和双柱式矩形薄壁墩,基础采用钻孔桩基础。采用有限元分析软件对主桥的平面静力特性,抗震性能、车桥动力响应等进行分析。计算结果表明:桥梁设计各项指标均能满足规范要求,桥梁具有良好的动力特性及列车走行性,列车行车安全性及舒适性均满足要求。  相似文献   

14.
以U型梁为主要研究对象,建立车辆-桥梁耦合动力分析模型,研究了车速、车辆类型和钢弹簧浮置板对高架U型梁桥动力响应的影响,分析了车辆和桥梁结构的动力特性,并对地铁列车通过U型梁桥系统时的行车安全性进行了评估。计算结果表明:车辆在50~100 km/h速度运行时,均满足行车安全性的要求,车辆振动会随着速度的增加而增加;从U型梁的行车安全性角度来分析,选取A型车比B型车更为合理;加入钢弹簧浮置板后,可减小桥梁竖向位移和竖向加速度,但会增加列车振动响应,在钢弹簧浮置板设计过程中,需兼顾车辆和桥梁的运营安全性;改变钢弹簧的刚度对桥梁振动响应的影响较小。  相似文献   

15.
大跨度铁路斜拉桥车桥耦合振动分析   总被引:3,自引:0,他引:3  
以某主跨432m铁路斜拉桥为例,运用桥梁结构动力学与车辆动力学,将桥上通行列车和桥梁视为联合动力体系,建立精细的列车与大跨度铁路斜拉桥的车桥耦合动力分析模型,计算与分析了该桥列车通过时的桥梁动力响应和列车走行性,计算结果表明:当国产C62货车和CRH2客车以不同的速度通过斜拉桥时,车辆、桥梁的动力响应均能达标,列车具有良好的走行性,该斜拉桥具有足够的横向、竖向刚度。研究结果为大跨度铁路斜拉桥的动力设计提供了理论依据。  相似文献   

16.
为研究高速铁路简支梁桥徐变、沉降等变形变位参数的合理设计限值,以车-桥耦合动力分析理论为基础,分析不同残余徐变变形、墩台工后沉降以及两者同时存在对高速铁路32 m、40 m简支梁桥行车安全性和旅客舒适性的影响。结果表明:残余徐变变形与墩台工后沉降对车体的竖向加速度影响更显著,对轮重减载率影响很小,简支梁桥工后变形变位限值主要受车体加速度等舒适性指标控制;同时考虑残余徐变变形与墩台工后沉降的影响时,车辆动力响应明显增大,40 m简支梁的车体加速度小于32 m简支梁的车体加速度;不同速度等级的高速铁路桥梁可采用不同的变形变位限值,在残余徐变变形固定为10 mm,且设计时速为250,300,350 km时,32 m(40 m)简支梁墩台工后沉降限值分别为6(8),8(10),6(12) mm。  相似文献   

17.
为研究波浪对跨海桥梁风车-桥耦合振动系统的影响,针对跨海桥梁所处风大、浪高的极端环境,建立了波浪-风-列车-桥梁动力模型,将风场视为空间相关的平稳高斯过程,高速列车采用质点-弹簧-阻尼器模型模拟,精细化全桥模型通过有限元方法建立,考虑风-列车-桥梁之间的耦合作用,波浪作为外部荷载施加到该耦合体系中。以主跨532 m某海洋桥梁为例,通过自主研发的桥梁科研软件BANSYS (Bridge Analysis System),分析了波高、风速、车速对耦合模型车辆和桥梁响应的影响。结果表明:风车-桥耦合振动体系的车辆和桥梁响应受波浪影响显著,车辆和桥梁响应在与波浪荷载一致的方向增加显著,15 m·s-1风速下,考虑波浪影响的车辆横向加速度最大值约是不考虑波浪时的1.3倍,考虑波浪影响的跨中横向位移最大值约是不考虑波浪时的22倍,而在非一致方向波浪对车-桥响应的影响较小;不同风速下,波浪对车辆横向加速度影响显著,考虑波浪影响的车辆横向加速度约是不考虑波浪时的1.2倍,而车辆竖向加速度、轮重加载率、倾覆系数等指标主要受风速的影响;波浪基频与桥梁横向位移响应谱主峰频率一致,波浪已成为影响桥梁横向位移响应的控制因素;波浪减弱了车速对车-桥响应的影响,随着波高的增加,车辆和桥梁响应对车速的变化更不敏感。  相似文献   

18.
为使列车高速通过大跨度铁路钢桁拱桥时具有良好的走行性,同时使桥梁具有良好的动力安全性,对该类桥梁的车-桥耦合振动进行分析.基于车-桥耦合振动理论,采用三角级数法模拟轨道随机不平顺,联立轮对沉浮振动及侧滚振动方程迭代求解轮轨力,采用迭代法求解桥梁及车辆响应.以南京大胜关长江大桥为例,采用推荐方法对该桥在不同列车(德国ICE3动力分散式高速列车、中华之星列车、南京轻轨列车、空载P62货物列车)以不同速度通过时,桥梁和车辆的动力性能进行分析.分析结果表明,该桥安全性和列车安全性、平稳性指标均满足要求,列车平稳性优良,推荐的计算模型及简化方法可用于同类桥梁的车-桥耦合振动分析.  相似文献   

19.
为研究列车通过桥面上设置多线铁路的大跨度钢桁梁桥所激发的车桥耦合振动的规律,以某两联2×84m连续钢桁梁桥为研究背景,将列车视为多刚体动力系统,用空间有限元对桥梁进行离散建模,并将列车、桥梁视为联合动力体系,建立列车与多线钢桁梁桥的车桥耦合动力模型,计算分析列车通过该桥时的桥梁动力响应和列车走行性。研究结果表明:当ICE3高速客车、C62普通货物列车混合编组通过桥梁时,桥梁和车辆的动力响应比单线客车通过桥梁时明显偏大;列车在各种组合工况下通过桥梁时,列车走行性能得到满足,桥梁动力性能良好。  相似文献   

20.
《公路》2020,(5)
选择重庆九龙坡至永川高速路段的来凤立交进行虚拟实验,目的是研究车速和匝道半径大小对行驶舒适性与安全性的影响,并依据实验结论对来凤立交提出合理限速与设置安全性设施。首先使用纬地三维道路设计软件对来凤立交进行立交复现,然后依据实车实验,利用Carsim车辆动力学软件对车辆进行建模指导。研究得出如下结论:(1)横向加速度在缓和曲线和圆曲线上的峰值随着车速的增加而变大,考虑行驶安全性与舒适性,给出了行车速度建议,匝道A、B建议车速为50km/h以内,匝道C建议车速45km/h,匝道D限速35km/h,并针对每一条匝道提出安全性建议;(2)增大匝道半径有利于提高行车安全性与舒适性,但是具体半径值还需要结合实际情况;(3)针对匝道C、D,研究车速与匝道半径耦合效应下对横向加速度的影响,车速与半径对匝道D上的横向加速度影响程度都很大,而匝道C上的横向加速度主要受车速影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号