首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
针对某轻型客车噪声评估过程中车内噪声水平未达到目标样车水平的问题进行研究。根据该车整车及进气系统噪声测试结果改进空气滤清器结构,在其壳体内部增加加强筋以提高壳体刚度。进气系统优化后,整车怠速工况下50 Hz的峰值频率下降2 d B,总声压级也降低2 d B;全油门加速工况时,2 100 r/min处噪声峰值消除;全油门加速工况和匀速工况时车内轰鸣声降低。  相似文献   

2.
传动系统扭振引起的车内低频轰鸣声,一直是汽车NVH领域的难点和热点问题。针对某型三缸机中型多用途汽车的中油门加速,在1400-2000r/min发动机转速时的车内低频轰鸣声问题,基于半消声室转鼓试验研究,运用相关性分析方法,锁定了传动系扭振为该问题的激励源,并通过传递路径分析,识别了前风挡玻璃与一阶空腔模态的受迫/耦合共振,是导致车内空气压力脉动升高并产生低频轰鸣声的主要原因。通过车身传递路径的优化,降低了车内低频轰鸣声2-4dB(A),显著提升了加速工况的车内声品质,为车内低频轰鸣声问题的优化提供了指导。  相似文献   

3.
某轻卡加速至3600rpm时,车内出现明显的轰鸣声,严重影响驾乘舒适性。利用LMS数据采集系统对样车进行NVH试验,分析出进气噪声的突变和发动机悬置被动端支架的共振是引起车内轰鸣声的主要原因。通过优化进气系统谐振腔结构、提高发动机悬置支架的模态,车内噪声在3600rpm时降低了6dB(A)左右,轰鸣声消除,主观评价可以接受。  相似文献   

4.
针对某款车在加速工况下,发动机转速在3 600 r/min左右车内出现轰鸣噪声,文章利用试验和CAE相结合的方法,明确进气系统存在120 Hz声模态和空滤支架安装点动刚度不足是产生车内轰鸣声的要因。通过提升空滤支架安装点动刚度,出气管设计120 Hz谐振腔,降低了问题转速的噪声峰值,主观评价轰鸣声改善明显。另外,针对出气管隔振波纹的隔振方向对车内噪声的影响进行了研究,试验验证隔振波纹解耦对车内噪声峰值有2 dB(A)的优化效果,此优化方向为工程化控制和解决进气系统噪声问题提供了有效可行的新思路。  相似文献   

5.
某SUV量产车型售后客户抱怨发动机转速3000~4000rpm时车内加速噪声大,通过主观评价及客观数据分析发现该转速段内存在轰鸣声。借助模态试验和仿真相结合的方法分析了轰鸣声的形成原因,识别了轰鸣声的主要传递路径,确认了副车架模态对车内轰鸣声的影响。通过采用在前挡板和纵梁连接处增加支架的优化方案,有效解决客户抱怨的车内加速噪声大的问题。  相似文献   

6.
针对电动汽车车内高频噪声问题,利用空气声传递路径分析方法,识别驾驶室内噪声问题的主要原因。以驱动电机系统6辐射表面作为点声源,司机内耳噪声作为目标点,建立传递路径分析模型。采用逆矩阵法识别6点声源的空气声载荷,得到各路径对驾驶室内噪声问题的贡献量,为问题的解决提供优化方向。研究表明,空气声传递路径分析能有效应用于电动汽车的车内高频噪声问题的分析。  相似文献   

7.
本文阐明了乘用车车内轰鸣声的产生机理,并介绍了轰鸣声的分析与控制方法。文中按照"激励源-传递路径-响应"的分析思路,对某SUV车型的车内轰鸣声进行了详细的试验与分析,找出了该车车内轰鸣声的主要问题。针对该车高转速车内轰鸣声过大的问题,重点分析了前减振塔及加强横梁、前围防火墙、前风挡玻璃对其车内轰鸣声的影响程度。通过优化前围与前风挡玻璃支撑刚度,降低车身振动,有效地缓解了高转速段的车内轰鸣声问题。通过本文的试验与分析,为高转速段车内轰鸣声的改善提供了成功的解决方案和改进措施,具有较大的工程参考价值。  相似文献   

8.
针对某中型客车进气口辐射噪声和车内噪声较大的问题,首先根据车内声模态试验结果和对道路试验数据的偏相干与频谱分析结果,找到了主要噪声源为进气口,并确定了消声目标频段。接着研究了空滤器滤芯与穿孔管的声学特性,建立了进气系统有限元声学模型,并通过对比进气系统传递损失仿真曲线与怠速进气口噪声频谱,验证了模型的准确性。然后针对目标频段设计了进气消声器,使进气系统的传递损失在250~400Hz频段平均达24.7d B。最后进行了道路验证试验,结果表明设计的消声器有效降低了进气口辐射噪声和车内噪声。  相似文献   

9.
以某自主品牌乘用车怠速车内噪声为研究对象,通过动力总成悬置系统隔振率试验、车内噪声分离试验等方法定量确定车内各噪声源的贡献量大小,并从排气管口噪声源控制、悬置垫结构传递路径控制及防火墙隔音垫空气传递路径控制等方面分别提出怠速车内噪声控制的改进措施。采取改进措施后的试验样车怠速工况下车内噪声降低3.5dB(A),达到国内合资品牌水平。  相似文献   

10.
进气系统噪声是汽车的主要噪声源之一,它直接影响着车内噪声和通过噪声,从而影响着驾乘人员的驾乘感受和能否满足通过噪声的法规要求。空气滤清器作为进气系统的关键零部件之一,它不仅仅起到保护发动机的能力,还具备着降低进气系统噪声的能力。空气滤芯作为多孔介质,不仅能吸收噪声,还可以通过多孔区域将声能转化为热能从而消除噪声,而影响空气滤芯降噪能力的因素主要为流阻率、孔隙率和结构因子,而三个因素是如何影响空气滤芯的消音能力就需要通过仿真分析进行验证。文章通过Hyper mesh和Virtual Lab软件进行传递损失联合仿真分析,验证各个因素对滤芯消声能力的影响。  相似文献   

11.
本文首先介绍了单自由度粘性阻尼系统动刚度理论和计算方法,提出通过增加结构局部刚度减少车内噪音的观点,并以某车为例,通过试验发现该车后排轰鸣音问题,利用CAE分析方法找到导致该轰鸣音问题的原因,提出在排气管中通道两侧安装加强板以增加局部刚度的几种NVH优化方案,通过CAE方法分析各种优化方案的动刚度和固有频率,最终确定最佳方案,较好的解决了后排轰鸣音问题。  相似文献   

12.
为了解决增压器泄压阀噪声的问题,展开了相关的声学测试,以确定噪声的频率和声压级等特性。对进气系统进行了优化,计算了优化后系统的声压级差以确定方案的有效性。然后,制作了进气系统样件,将样件装到车辆上进行测量,以验证方案的有效性。试验结果表明,该方案能有效降低增压器泄压阀噪声,对相关问题的解决有一定的指导意义。  相似文献   

13.
针对某款即将量产的国产SUV进气噪声过高的问题,通过试验的方法对进气系统进行了低噪声优化。结合整车节气门全开工况进气噪声道路试验结果,针对噪声突出的频率成分设计了内插管,有效降低了全转速段的进气噪声。同时通过试验的方法探讨了在引气管上开孔对进气噪声的影响,发现开孔后进气系统的传递损失和消声量都有不同程度的提升,发动机台架试验也表明在引气管上开孔能够有效降低进气噪声。  相似文献   

14.
按照"源-路径-响应"的NVH控制分析方法,分析了怠速车内轰鸣音的产生原因及影响因素,逐步对"源"、"路径"、"响应"进行了测试与分析。问题车"源"的振动噪声与商品车一致,"路径"传递比商品车差,但其不是主因,客户对"响应"本体做了结构更改,导致前围顶盖怠速共振且与改变的车内声腔模态发生声固耦合,加剧了轰鸣音。结合客户车辆现状,只能通过增加前顶盖横梁、增加补强材来提高前顶盖局部模态,避免共振,改进后期验证效果较好,满足客户诉求。  相似文献   

15.
为探讨进气系统对整车NVH性能的贡献度,文章通过管道声学理论在内燃机进气系统上的应用研究,实现了进气系统开发及噪声优化设计工作。以某2.4 L自然吸气车型的进气系统开发项目为研究案例,结合四负载法,对进气系统声源特性进行提取;整合整车消声室测试方法,通过加装空气滤清器、赫姆霍兹消声器及1/4波长管等抗性消声元件解决了进气系统噪声问题;通过试验,验证了四负载法结合声阻抗性消声元件设计优化方法的有效性。  相似文献   

16.
汽油机进气系统噪声仿真技术研究   总被引:1,自引:1,他引:0  
基于非线性平面波理论和流阻分析技术,建立了汽油机进气系统噪声仿真平台,并进行了某汽油机匹配原进气系统管口噪声和流阻计算,计算结果与试验结果的对比表明该进气系统噪声仿真方法可行.针对某微型车更换动力总成后车内噪声没有达到目标样车水平的问题,提出了2种空气滤清器改进方案,并分别进行了2种方案的进气系统管口噪声仿真计算.结果表明,方案2最优,其不仅能降低某些转速的峰值噪声,还能保证车辆的动力性.  相似文献   

17.
某1.5T SUV车型在开发过程中,发现在加速工况下,车内存在3000r/min、3600r/min的轰鸣声,严重影响主观感受。经过排查试验,确定问题原因为排气系统热端模态被激发,振动通过吊钩传递到车身,引起车身局部钣件共振,最终引起车内轰鸣声。利用CAE分析制定优化方案并进行实车验证,经过验证,加速轰鸣声改善明显。  相似文献   

18.
某微型客车在行驶过程中发动机高转速时驾驶室产生共鸣声,车身有严重的振动现象。NVH测试结果显示发动机右悬置支架Z向动刚度偏低。采用有限元分析方法对发动机右悬置进行动刚度分析,基于动力总成悬置系统刚度匹配原则和结构参数敏感性分析,并考虑装配及焊接工艺等因素,提出一个较为合理的改进方案。改进方案装车后NVH测试结果表明车内噪声明显降低,发动机转速为3 315 r/min时降了4.3 dB,3 671 r/min时降了10 dB,3 860r/min时降了4.5 dB,车身振动主观感觉亦有明显减弱。  相似文献   

19.
In an attempt to reduce idling vibration and booming noise in automobile engines, the authors have developed an engine mounting system we call the ACM(Active Control engine Mount) system. Comprising a pair of electromagnetic actuators and hydraulic mounts, the system incorporates an adaptive control strategy based on the synchronized filtered-X LMS (SFX) algorithm. The crank angle pulse signal is detected as the synchronization signal and the force transmitted to the car body through the engine mounts is detected as a residual signal. Application of the ACM system to a vehicle with a transversally mounted four-cylinder engine resulted in significantly reduced idling vibration and booming noise.  相似文献   

20.
Development of an Active Control Engine Mount System   总被引:3,自引:0,他引:3  
In an attempt to reduce idling vibration and booming noise in automobile engines, the authors have developed an engine mounting system we call the ACM(Active Control engine Mount) system. Comprising a pair of electromagnetic actuators and hydraulic mounts, the system incorporates an adaptive control strategy based on the synchronized filtered-X LMS (SFX) algorithm. The crank angle pulse signal is detected as the synchronization signal and the force transmitted to the car body through the engine mounts is detected as a residual signal. Application of the ACM system to a vehicle with a transversally mounted four-cylinder engine resulted in significantly reduced idling vibration and booming noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号