首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
高振海  管欣  李谦  郭孔辉 《汽车工程》2002,24(5):434-437
利用预瞄跟踪理论、模糊决策理论和非线性系统描述函数法建立了一个驾驶员速度控制模型,即加强员最优预瞄纵向加速度模型,仿真结果表明,该模型通过对驾驶安全性、合法性、轻便性、驾驶员自身滞后特性及汽车动力学系统强非线性特性的考虑,可以有效地模拟驾驶员控制汽车速度的行为特性,为人-车-路闭环系统中速度控制研究提供了一条可行途径。  相似文献   

2.
非线性闭环汽车系统直线行驶稳定性分析   总被引:3,自引:0,他引:3  
秦民  林逸  闵海涛  朱启昕 《汽车工程》2002,24(6):520-523,519
详细研究了驾驶员-汽车闭环系统直线行驶稳定性问题。在线性范围内分析了驾驶员预瞄时间和轮胎刚度对临界车速的影响;在非线性领域内运用Hopf定理等非线性理论研究了当系统失去直线行驶稳定性后的特殖运动形式,并以某一国产汽车为例,验证了该车失去直线行驶稳定性后,将出现稳定的蛇行运动。  相似文献   

3.
转向盘转角阶跃输入下半挂汽车列车操纵稳定性仿真分析   总被引:4,自引:0,他引:4  
基于包括任意载荷分布的非线性轮胎模型在内的半挂汽车列车整车模型,应用汽车列车动力学仿真软件Arc Sim,分析了半挂汽车列车在转向盘转角阶跃输入时的转向特性。通过在不同车速、不同结构参数等条件下的仿真计算,揭示了半挂汽车列车的转向特性与车速、结构参数之间的内在联系,给出了半挂汽车列车转向特性在这些条件下的表现特征,为半挂汽车列车操纵稳定性分析提供了参考和借鉴。  相似文献   

4.
为提高汽车行驶安全性,设计了基于障碍物斥力场模型的汽车主动避撞系统,建立了道路算盘模型和驾驶员预瞄跟随模型,利用算盘模型可求解出避撞路径,使用驾驶员预瞄跟随模型可求解出汽车转向盘最优转角。通过动静态障碍物环境下的仿真试验表明,利用算盘模型规划出的路径平滑、安全、可跟踪;驾驶员预瞄跟随模型的路径跟随精度高,实现了汽车主动避撞。  相似文献   

5.
准确获取车辆的状态信息是汽车主动安全控制研究的关键。文中主要研究半挂汽车列车稳定性控制中的状态估计问题,研究了基于线性四自由度(4-DOF)半挂汽车列车模型,利用卡尔曼滤波(KF)算法估计半挂汽车列车的横摆角速度与质心侧偏角;基于商用车动力学仿真标准软件TruckSim,通过标准双移线仿真工况进行验证,结果表明,在非高速急转向工况下,所提出的估计方案能较准确地跟踪汽车列车的状态信息,为半挂汽车列车主动安全控制奠定基础。  相似文献   

6.
为半挂汽车列车建立了简化的四自由度单轨模型,并在其上分析了两个重要结构参数,即牵引点和挂车质心位置对半挂汽车列车横向稳定性的影响规律.在此基础上,采用主元特征向量分析方法详细探讨了半挂汽车列车"折叠"和"横向摆振"两种常见的横向失稳现象的发生机理,分析和对比了牵引角和牵引角速度输出反馈对半挂汽车列车"折叠"和"横向摆振"失稳的镇定效果.  相似文献   

7.
转弯制动性能对半挂汽车列车的制动安全有重大影响,针对我国目前半挂汽车列车转弯制动试验标准缺失,传统的单车试验设备不适用于半挂汽车列车等问题,本文中从试验系统搭建、系统安装方式和试验方法与评价等方面对半挂汽车列车转弯制动试验进行了探索性研究。结果表明:半挂汽车列车转弯制动过程中侧向加速度、制动减速度、横摆角速度和牵引车的俯仰角随车速的升高而增加。建议半挂汽车列车转弯制动试验中车速不超过30km/h,转弯半径不小于25m。  相似文献   

8.
研究通过试验辨识获得最优预瞄加速度驾驶员模型物理参数的方法。采用时域辨识方法确定模型传递函数,采用非线性最小二乘法确定传递函数中所包含的物理参数,利用已知目标函数优化预瞄时间和反应时间,针对仿真数据进行了辨识分析。结果表明,该方法对驾驶员模型物理参数的辨识具有良好的效果。  相似文献   

9.
针对半挂汽车列车弯道行驶稳定性差的问题.运用仿真分析软件ADAMS建立了半挂汽车列车整车模型,通过对比稳态转向特性试验和制动效能试验的仿真结果与实车试验结果,验证了仿真模型与实车的一致性.分析了弯道行驶工况下轴偏角对半挂汽车列车折叠角和转向特性的影响,结果表明,半挂车轴偏角的方向与半挂汽车列车的转向一致时,半挂汽车列车折叠角增大,有利于半挂汽车列车的行驶稳定性.  相似文献   

10.
驾驶员方向控制模型及在汽车智能驾驶研究中的应用   总被引:8,自引:0,他引:8  
分析了驾驶员开车行为特性,利用模糊决策理论介绍了汽车预期行驶轨迹驾驶员模糊决策模型,并结合驾驶员预瞄最优曲率模型建立了一个新的驾驶员方向控制模型,同时也论述了该驾驶员方向控制模型在汽车智能驾驶研究中的应用。仿真结果表明所提出的模型可以描述驾驶员对汽车行驶方向的控制行为,并为汽车智能驾驶的研究提供了一条可行途径。  相似文献   

11.
This paper presents the results of a parametric sensitivity analysis of a five-axle tractor-semitrailer vehicle combination using 3-DOF linear yaw/plane model. The first order logarithmic sensitivity functions are derived with respect to several vehicle design parameters. For stabilization of the vehicle's directional behaviour a fairly new control concept called “Active Unilateral Braking Control (AUBC)” acting on the tractor rear wheel's in order to produce a stabilizing yaw torque is investigated. The AUBC system improves not only the directional stability, but also affects the roll dynamics of the vehicle. The sensitivity of the controlled vehicle system with linear quadratic controller (LQR) is also examined, a robust controller design procedure is proposed as a result of the sensitivity analysis. The robustness of this controller in the presence of both internal (including parametric uncertainties, non-linear dynamics) and external disturbances (such as road irregularities and side wind) allows its implementation with confidence with a non-linear vehicle model. The applicability of this control system to a non-linear vehicle model is tested using a 34 DOF, non-linear vehicle model of the tractor-semitrailer combination.  相似文献   

12.
SUMMARY

This paper presents the results of a parametric sensitivity analysis of a five-axle tractor-semitrailer vehicle combination using 3-DOF linear yaw/plane model. The first order logarithmic sensitivity functions are derived with respect to several vehicle design parameters. For stabilization of the vehicle's directional behaviour a fairly new control concept called “Active Unilateral Braking Control (AUBC)” acting on the tractor rear wheel's in order to produce a stabilizing yaw torque is investigated. The AUBC system improves not only the directional stability, but also affects the roll dynamics of the vehicle. The sensitivity of the controlled vehicle system with linear quadratic controller (LQR) is also examined, a robust controller design procedure is proposed as a result of the sensitivity analysis. The robustness of this controller in the presence of both internal (including parametric uncertainties, non-linear dynamics) and external disturbances (such as road irregularities and side wind) allows its implementation with confidence with a non-linear vehicle model. The applicability of this control system to a non-linear vehicle model is tested using a 34 DOF, non-linear vehicle model of the tractor-semitrailer combination.  相似文献   

13.
为研究半挂汽车列车在高速大转向等极限操作工况下的横摆稳定性控制问题,建立了14自由度的半挂汽车列车非线性仿真模型;提出了牵引车与半挂车独立直接横摆力矩控制的横摆稳定性控制方案,通过牵引车和半挂车车轮的合理选择和主动制动实现横摆控制;以跟踪参考模型的稳态横摆响应为目标,设计了PI横摆稳定性控制器,对牵引车和半挂车分别设计了目标制动车轮的选择决策规则。单移线操作仿真结果表明,基于主动制动的横摆力矩控制可有效改善极限工况下半挂汽车列车的横摆稳定性,牵引车与半挂车进行独立横摆控制可以减小制动车轮选择决策的复杂性,而获得较好的控制效果。  相似文献   

14.
应用虚拟样机技术进行半挂汽车列车制动动力学分析   总被引:3,自引:0,他引:3  
将虚拟仿真软件ADAMS应用到半挂汽车列车制动动力学研究中,建立了半挂汽车列车整车26自由度(DOF)动力学模型,对半挂汽车列车直线制动及转弯制动进干亍了仿真分析。通过仿真分析发现,在车辆无ABS转弯制动时,即使按照理想抱死顺序实施制动,半挂车也会出现瞬态“甩尾”的危险工况。  相似文献   

15.
Summary This paper describes a flexible and modular 9-degrees-of-freedom nonlinear dynamic handling model for a tractor-semitrailer combination vehicle. The equations of motion are derived from the fundamental equations of dynamics in Euler's formulation, with the use of general computer-algebra software. The primary aim of the model is simulation of handling scenarios with active yaw control, using unilateral braking. However, it may also prove useful in other areas of tractor-semitrailer handling analysis or hardware-in-the-loop simulations. The model is formulated as a state-space model that may be implemented in standard simulation environments. A Simulink implementation is presented, and simulation results are compared with experiments to validate the model.  相似文献   

16.
ABSTRACT

Steady and Transient Turning of Tractor-Semitrailer and Truck-Trailer Combinations: A Linear Analysis

A simplified analysis is made of the yaw stability and control of the two types of the commercial vehicle combinations (tractor-semitrailer, truck-trailer) at a constant forward velocity during steady and transient turning. The combined vehicle is treated as a linear dynamic system (Fig. 2). The steer angle at the front wheels of the tractor (or truck) and the steady-state responses if the road verhicle train (yaw rate, articulation angles and sideslip angle) are calculated (Equations 18 to 25). Exploratory calculations are performed to determine the influence of the cornering stiffness of the tires for the two types of the vehicle combinations upon the steady-state responses (Figs. 7 to 10). For a linear simplified model of articulated vehicle the steady-state turning behaviour is stable also under conditions of rather high driving speed (70 km/h). A simplified analysis of the transient turning behaviour of the two types of road trains has shown the tractor-semitrailer to preserve stability even under driving speeds exceeding 70 km/h (Fig. 13), whereas the truck-trailer combinations appear to become oscillatory unstable if the driving speed rises above the 60 km/h margin (Fig. 14).  相似文献   

17.
Steady and Transient Turning of Tractor-Semitrailer and Truck-Trailer Combinations: A Linear Analysis

A simplified analysis is made of the yaw stability and control of the two types of the commercial vehicle combinations (tractor-semitrailer, truck-trailer) at a constant forward velocity during steady and transient turning. The combined vehicle is treated as a linear dynamic system (Fig. 2). The steer angle at the front wheels of the tractor (or truck) and the steady-state responses if the road verhicle train (yaw rate, articulation angles and sideslip angle) are calculated (Equations 18 to 25). Exploratory calculations are performed to determine the influence of the cornering stiffness of the tires for the two types of the vehicle combinations upon the steady-state responses (Figs. 7 to 10). For a linear simplified model of articulated vehicle the steady-state turning behaviour is stable also under conditions of rather high driving speed (70 km/h). A simplified analysis of the transient turning behaviour of the two types of road trains has shown the tractor-semitrailer to preserve stability even under driving speeds exceeding 70 km/h (Fig. 13), whereas the truck-trailer combinations appear to become oscillatory unstable if the driving speed rises above the 60 km/h margin (Fig. 14).  相似文献   

18.
Summary This paper describes a flexible and modular 9-degrees-of-freedom nonlinear dynamic handling model for a tractor-semitrailer combination vehicle. The equations of motion are derived from the fundamental equations of dynamics in Euler’s formulation, with the use of general computer-algebra software. The primary aim of the model is simulation of handling scenarios with active yaw control, using unilateral braking. However, it may also prove useful in other areas of tractor-semitrailer handling analysis or hardware-in-the-loop simulations. The model is formulated as a state-space model that may be implemented in standard simulation environments. A Simulink implementation is presented, and simulation results are compared with experiments to validate the model.  相似文献   

19.
Two nonlinear lateral control algorithms are designed for a tractor-semitrailer type commercial heavy vehicle. The baseline steering control algorithm is designed utilizing input-output linearization. To enhance the lateral stability and furthermore reduce tracking errors of the trailer, braking forces are independently controlled on the inner and outer wheels of the trailer. The coordinated steering and braking control algorithm is designed based on the multivariable backstepping technique. Simulations conducted using the complex model show that the trailer yaw errors under coordinated steering and independent braking force control are much smaller than those without independent braking force control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号