首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Network location models have been used extensively for siting public and private facilities. In this paper, we investigate a model that simultaneously optimizes facility locations and the design of the underlying transportation network. Motivated by the simple observation that changing the network topology is often more cost-effective than adding facilities to improve service levels, the model has a number of applications in regional planning, distribution, energy management, and other areas. The model generalizes the classical simple plant location problem. We show how the model can be solved effectively. We then use the model to analyze two potential transportation planning scenarios. The fundamental question of resource allocation between facilities and links is investigated, and a detailed sensitivity analysis provides insight into the model's usefulness for aiding budgeting and planning decisions. We conclude by identifying promising research directions.  相似文献   

2.
In urban emergency evacuation, a potentially large number of evacuees may depend either on transit or other modes, or need to walk a long distance, to access their passenger cars. In the process of approaching the designated pick-up points or parking areas for evacuation, the massive number of pedestrians may cause tremendous burden to vehicles in the roadway network. Responsible agencies often need to contend with congestion incurred by massive vehicles emanating from parking garages, evacuation buses generated from bus stops, and the conflicts between evacuees and vehicles at intersections. Hence, an effective plan for such evacuation needs to concurrently address both the multi-modal traffic route assignment and the optimization of network signal controls for mixed traffic flows. This paper presents an integrated model to produce the optimal distribution of vehicle and pedestrian flows, and the responsive network signal plan for massive mixed pedestrian–vehicle flows within the evacuation zone. The proposed model features its effectiveness in accounting for multiple types of evacuation vehicles, the interdependent relations between pedestrian and vehicle flows via some conversion locations, and the inevitable conflicts between intersection turning vehicle and pedestrian flows. An illustrating example concerning an evacuation around the M&T stadium area has been presented, and the results indicate the promising properties of our proposed model, especially on reflecting the complex interactions between vehicle and pedestrian flows and the favorable use of high-occupancy vehicles for evacuation operations.  相似文献   

3.
Understanding the spatio-temporal road network accessibility during a hurricane evacuation—the level of ease of residents in an area in reaching evacuation destination sites through the road network—is a critical component of emergency management. While many studies have attempted to measure road accessibility (either in the scope of evacuation or beyond), few have considered both dynamic evacuation demand and characteristics of a hurricane. This study proposes a methodological framework to achieve this goal. In an interval of every six hours, the method first estimates the evacuation demand in terms of number of vehicles per household in each county subdivision (sub-county) by considering the hurricane’s wind radius and track. The closest facility analysis is then employed to model evacuees’ route choices towards the predefined evacuation destinations. The potential crowdedness index (PCI), a metric capturing the level of crowdedness of each road segment, is then computed by coupling the estimated evacuation demand and route choices. Finally, the road accessibility of each sub-county is measured by calculating the reciprocal of the sum of PCI values of corresponding roads connecting evacuees from the sub-county to the designated destinations. The method is applied to the entire state of Florida during Hurricane Irma in September 2017. Results show that I-75 and I-95 northbound have a high level of congestion, and sub-counties along the northbound I-95 suffer from the worst road accessibility. In addition, this research performs a sensitivity analysis for examining the impacts of different choices of behavioral response curves on accessibility results.  相似文献   

4.
The purpose of this study is to explain the evacuee mode choice behavior of Miami Beach residents using survey data from a hypothetical category four hurricane to reveal different evacuees’ plans. Evacuation logistics should incorporate the needs of transit users and car-less populations with special attention and proper treatment. A nested logit model has been developed to explain the mode choice decisions for evacuees’ from Miami Beach who use non-household transportation modes, such as special evacuation bus, taxi, regular bus, riding with someone from another household and another type of mode denoted and aggregated as other. Specifically, the model explains that the mode choice decisions of evacuees’, who are likely to use different non-household transportation modes, are influenced by several determining factors related to evacuees’ socio-demographics, household characteristics, evacuation destination and previous experience. The findings of this study will help emergency planners and policy-makers to develop better evacuation plans and strategies for evacuees depending on others for their evacuation transportation.  相似文献   

5.
In a no-notice disaster (e.g., nuclear explosion, terrorist attack, or hazardous materials release), an evacuation may start immediately after the disaster strikes. When a no-notice evacuation occurs during the daytime, household members are scattered throughout the regional network, and some family members (e.g., children) may need to be picked up. This household pick-up and gathering behavior was seldom investigated in previous work due to insufficient data; this gap in our understanding about who within families handles child-gathering is addressed here. Three hundred fifteen interviews were conducted in the Chicago metropolitan area to ascertain how respondents planned their response to hypothetical no-notice emergency evacuation orders. This paper presents the influencing factors that affect household pick-up and gathering behavior/expectations and the logistic regression models developed to predict the probability that parents pick up a child in three situations: a normal weekday and two hypothetical emergency scenarios. The results showed that both mothers and fathers were more likely to pick up a child under emergency conditions than they were on a normal weekday. For a normal weekday, increasing the distance between parents and children decreased the probability of parents picking up children; in other words, the farther parents are from their children, the less likely they will pick them up. In an emergency, effects of distance on pick-up behavior were significant for women, but not significant for men; that is, increasing the distance between parents and children decreased the probability that mothers pick up a child, but had a less significant effect on the fathers’ probability. Another significant factor affecting child pick-up behavior/expectations was household income when controlling for distance. The results of this study confirm that parents expect to gather children under emergency conditions, which needs to be accounted for in evacuation planning; failure to do so could cause difficulties in executing the pick-ups, lead to considerable queuing and rerouting, and extend the time citizens are exposed to high levels of risk.  相似文献   

6.
The events of recent hurricane seasons have made evacuation a leading emergency management issue. In 1998 and 1999, Hurricanes Georges and Floyd precipitated the two largest evacuations in the history of the United States and perhaps, its two largest traffic jams. In response to the problems experienced during these events, many state departments’ of transportation have begun to take a more active role in the planning, management, and operation of hurricane evacuations. This is somewhat of a departure from prior practice when emergency management officials directed these tasks almost exclusively. Since the involvement of transportation professionals in the field of evacuation has been a fairly recent development, many of the newest practices and policies have only been used once, if ever. They also vary widely from state-to-state. To determine what the latest policies and strategies are and how they differed from one location to another, a national review of evacuation plans and practices was recently undertaken. The study was carried out from a transportation perspective and included both a review of the traditional transportation literature and a survey of department of transportation and emergency management officials in coastal states threatened by hurricanes. This paper highlights the findings of the survey portion of the study. It focuses mainly on current state practices, including the use of reverse flow operations and intelligent transportation systems. It also summarizes current evacuation management policies, methods of information exchange, and decision-making criteria. This paper presents the general similarities and differences in practices and gives particular attention to unique, innovative, and potentially useful practices used in individual states.  相似文献   

7.
Allocating movable resources dynamically enables evacuation management agencies to improve evacuation system performance in both the spatial and temporal dimensions. This study proposes a mixed integer linear program (MILP) model to address the dynamic resource allocation problem for transportation evacuation planning on large-scale networks. The proposed model is built on the earliest arrival flow formulation that significantly reduces problem size. A set of binary variables, specifically, the beginning and the ending time of resource allocation at a location, enable a strong formulation with tight constraints. A solution algorithm is developed to solve for an optimal solution on large-scale network applications by adopting Benders decomposition. In this algorithm, the MILP model is decomposed into two sub-problems. The first sub-problem, called the restricted master problem, identifies a feasible dynamic resource allocation plan. The second sub-problem, called the auxiliary problem, models dynamic traffic assignment in the evacuation network given a resource allocation plan. A numerical study is performed on the Dallas–Fort Worth network. The results show that the Benders decomposition algorithm can solve an optimal solution efficiently on a large-scale network.  相似文献   

8.
One of the important factors affecting evacuation performance is the departure time choices made by evacuees. Simultaneous departures of evacuees can lead to overloading of road networks causing congestion. We are especially interested in cases when evacuees subject to little or no risk of exposure evacuate along with evacuees subject to higher risk of threat (also known as shadow evacuation). One of the reasons for correlated evacuee departures is higher perceived risk of threat spread through social contacts. In this work, we study an evacuation scenario consisting of a high risk region and a surrounding low risk area. We propose a probabilistic evacuee departure time model incorporating both evacuee individual characteristics and the underlying evacuee social network. We find that the performance of an evacuation process can be improved by forcing a small subset of evacuees (inhibitors) in the low risk area to delay their departure. The performance of an evacuation is measured by both average travel time of the population and total evacuation time of the high risk evacuees. We derive closed form expressions for average travel time for ER random network. A detailed experimental analysis of various inhibitor selection strategies and their effectiveness on different social network topologies and risk distribution is performed. Results indicate that significant improvement in evacuation performance can be achieved in scenarios where evacuee social networks have short average path lengths and topologically influential evacuees do not belong to the high risk regions. Additionally, communities with stronger ties improve evacuation performance.  相似文献   

9.
This article describes a simple, rapid method for calculating evacuation time estimates (ETEs) that is compatible with research findings about evacuees’ behavior in hurricanes. This revision of an earlier version of the empirically based large scale evacuation time estimate method (EMBLEM) uses empirical data derived from behavioral surveys and allows local emergency managers to calculate ETEs by specifying four evacuation route system parameters, 16 behavioral parameters, and five evacuation scope/timing parameters. EMBLEM2 is implemented within a menu-driven evacuation management decision support system (EMDSS) that local emergency managers can use to calculate ETEs and conduct sensitivity analyses to examine the effects of plausible variation in the parameters. In addition, they can run EMDSS in real time (less than 10 min of run time) to recalculate ETEs while monitoring an approaching hurricane. The article provides an example using EMDSS to calculate ETEs for San Patricio County Texas and discusses directions for further improvements of the model.  相似文献   

10.
The evacuation operations problem aims to avoid or mitigate the potential loss of life in a region threatened or affected by a disaster. It is shaped to a large extent by the evolution of evacuation traffic resulting from the demand–supply interactions of the associated transportation network. Information-based control is a strategic tool for evacuation traffic operations as it can enable greater access to the affected population and more effective response. However, comparatively few studies have focused on the implementation of information-based control in evacuation operations. This study develops a control module for evacuation operations centered on addressing the demand–supply interactions by using behavior-consistent information strategies. These strategies incorporate the likely responses of evacuees to the information provided in the determination of route guidance information. The control module works as an iterative computational process involving an evacuee route choice model and a control model of information strategies to determine the route guidance information to direct evacuation traffic so as to approach a desired network traffic flow pattern. The problem is formulated as a fuzzy logic based optimization framework to explicitly incorporate practical concerns related to information dissemination characteristics and social equity in evacuation operations. Numerical experiments highlight the importance of accounting for the demand–supply interactions, as the use of behavior-consistent information strategies can lead evacuee route choices to approach the operator-desired proportions corresponding to the desired traffic pattern. The results also indicate that while a behavior-consistent information strategy can be effective, gaps with the desired route proportions can exist due to the discrete nature of the linguistic messages and the real-world difficulty in accurately modeling evacuees’ actual route choice behavior.  相似文献   

11.
Infrastructure facilities may be subject to probabilistic disruptions that compromise individual facility functionality as well as overall system performance. Disruptions of distributed facilities often exhibit complex spatial correlations, and thus it is difficult to describe them with succinct mathematical models. This paper proposes a new methodological framework for analyzing and modeling facility disruptions with general correlations. This framework first proposes pairwise transformations that unify three probabilistic representations (i.e., based on conditional, marginal, and scenario probabilities) of generally correlated disruption profile among multiple distributed facilities. Then facilities with any of these disruption profile representations can be augmented into an equivalent network structure consisting of additional supporting stations that experience only independent failures. This decomposition scheme largely reduces the complexity associated with system evaluation and optimization. We prove analytical properties of the transformations and the decomposition scheme, and illustrate the proposed methodological framework using a set of numerical case studies and sensitivity analyses. Managerial insights are also drawn.  相似文献   

12.
Resource allocation in transit-based emergency evacuation is studied in this paper. The goal is to find a method for allocation of resources to communities in an evacuation process which is (1) fair, (2) reasonably efficient, and (3) able to dynamically adapt to the changes to the emergency situation. Four variations of the resource allocation problem, namely maximum rate, minimum clearance time, maximum social welfare, and proportional fair resource allocation, are modeled and compared. It is shown that the optimal answer to each problem can be found efficiently. Additionally, a distributed and dynamic algorithm based on the Lagrangian dual approach, called PFD2A, is developed to find the proportional fair allocation of resources and update the evacuation process in real time whenever new information becomes available. Numerical results for a sample scenario are presented.  相似文献   

13.
This paper studies a reliable joint inventory-location problem that optimizes facility locations, customer allocations, and inventory management decisions when facilities are subject to disruption risks (e.g., due to natural or man-made hazards). When a facility fails, its customers may be reassigned to other operational facilities in order to avoid the high penalty costs associated with losing service. We propose an integer programming model that minimizes the sum of facility construction costs, expected inventory holding costs and expected customer costs under normal and failure scenarios. We develop a Lagrangian relaxation solution framework for this problem, including a polynomial-time exact algorithm for the relaxed nonlinear subproblems. Numerical experiment results show that this proposed model is capable of providing a near-optimum solution within a short computation time. Managerial insights on the optimal facility deployment, inventory control strategies, and the corresponding cost constitutions are drawn.  相似文献   

14.
Knowledge on human behaviour in emergency is crucial to increase the safety of buildings and transportation systems. Decision making during evacuations implies different choices, of which one of the most important concerns is the escape route. The choice of a route may involve local decisions on alternative exits from an enclosed environment. This study investigates the effect of environmental (presence of smoke, emergency lighting and distance of exit) and social factors (interaction with evacuees close to the exits and with those near the decision-maker) on local exit choice. This goal is pursued using an online stated preference survey carried out making use of non-immersive virtual reality. A sample of 1503 participants is obtained and a mixed logit model is calibrated using these data. The model shows that the presence of smoke, emergency lighting, distance of exit, number of evacuees near the exits and the decision-maker and flow of evacuees through the exits significantly affect local exit choice. Moreover, the model indicates that decision making is affected by a high degree of behavioural uncertainty. Our findings support the improvement of evacuation models and the accuracy of their results, which can assist in designing and managing building and transportation systems. The main aim of this study is to enrich the understanding of how local exit choices are made and how behavioural uncertainty affects these choices.  相似文献   

15.
Evacuation planning and scheduling is a critical aspect of disaster management and national security applications. This paper proposes a conflict-based path-generation approach for evacuation planning. Its key idea is to decompose the evacuation planning problem into a master and a subproblem. The subproblem generates new evacuation paths for each evacuated area, while the master problem optimizes the flow of evacuees and produce an evacuation plan. Each new path is generated to remedy conflicts in the evacuation flows and adds new columns and a new row in the master problem. The algorithm is applied to a set of large-scale evacuation scenarios ranging from the Hawkesbury-Nepean flood plain (West Sydney, Australia) which require evacuating in the order of 70,000 persons, to the New Orleans metropolitan area and its 1,000,000 residents. Experiments illustrate the scalability of the approach which is able to produce evacuation for scenarios with more than 1200 nodes, while a direct Mixed Integer Programming formulation becomes intractable for instances with more than 5 nodes. With this approach, realistic evacuations scenarios can be solved near-optimally in reasonable time, supporting both evacuation planning in strategic, tactical, and operational environments.  相似文献   

16.
Traffic management during an evacuation and the decision of where to locate the shelters are of critical importance to the performance of an evacuation plan. From the evacuation management authority’s point of view, the desirable goal is to minimize the total evacuation time by computing a system optimum (SO). However, evacuees may not be willing to take long routes enforced on them by a SO solution; but they may consent to taking routes with lengths not longer than the shortest path to the nearest shelter site by more than a tolerable factor. We develop a model that optimally locates shelters and assigns evacuees to the nearest shelter sites by assigning them to shortest paths, shortest and nearest with a given degree of tolerance, so that the total evacuation time is minimized. As the travel time on a road segment is often modeled as a nonlinear function of the flow on the segment, the resulting model is a nonlinear mixed integer programming model. We develop a solution method that can handle practical size problems using second order cone programming techniques. Using our model, we investigate the importance of the number and locations of shelter sites and the trade-off between efficiency and fairness.  相似文献   

17.
This study seeks to determine risk-based evacuation subzones for stage-based evacuation operations in a region threatened/affected by a disaster so that information-based evacuation strategies can be implemented in real-time for the subzone currently with highest evacuation risk to achieve some system-level performance objectives. Labeled the evacuation risk zone (ERZ), this subzone encompasses the spatial locations containing the population with highest evacuation risk which is a measure based on whether the population at a location can be safely evacuated before the disaster impacts it. The ERZ for a stage is calculated based on the evolving disaster characteristics, traffic demand pattern, and network supply conditions over the region in real-time subject to the resource limitations (personnel, equipment, etc.) of the disaster response operators related to implementing the evacuation strategies. Thereby, the estimated time-dependent lead time to disaster impact at a location and the estimated time-dependent clearance time based on evolving traffic conditions are used to compute evacuation risk. This time-unit measure of evacuation risk enables the ERZ concept to be seamlessly applied to different types of disasters, providing a generalized framework for mass evacuation operations in relation to disaster characteristics. Numerical experiments conducted to analyze the performance of the ERZ-based paradigm highlight its benefits in terms of better adapting to the dynamics of disaster impact and ensuring a certain level of operational performance effectiveness benchmarked against the idealized system optimal traffic pattern for the evacuation operation, while efficiently utilizing available disaster response resources.  相似文献   

18.
Due to the interdependency between multiple infrastructure systems, the performance of a facility may depend on the resources or supplies received from other facilities. However, cross-system interdependence has seldom been studied in the location design context, probably due to the lack of a concise model describing interdependence across heterogeneous systems. This paper proposes a new heterogeneous flow scheme to describe cross-system interdependence. This scheme has two features distinguished from existing models in describing an interdependent facility location problem. First, it is a simple linear model upon which a compact facility location model can be built. Secondly, it relaxes the need to maintain flow conservation between different systems and is suitable in describing heterogeneous systems that take in and output different resources or services. Built on this scheme, this paper proposes a reliable location design model for a nexus of interdependent infrastructure systems. This model aims to locate the optimal facility locations in multiple heterogeneous systems to balance the tradeoff between the facility investment and the expected nexus operation performance. Different from other reliable facility location models, this expected performance captures interdependence among heterogeneous systems due to the resource input-output relationships. The consideration of continuous partial capacity losses complements the reliable location literature that mainly focuses on binary disruptions. Two numerical examples are conducted for investigating features and applications of the proposed model. The results indicate that with a standard off-the-shelf integer programming solver, the proposed model is able to solve optimal facility location design for problem instances of realistic scales to the near-optimum solutions with optimality gap assurance. Sensitivity analyses of key parameters indicate that improving facility capacity and reducing interdependency between systems can mitigate impacts of facility capacity losses and reduce the overall system cost.  相似文献   

19.
This paper develops a decision‐support model for transit‐based evacuation planning under demand uncertainty. Demand uncertainty refers to the uncertainty associated with the number of transit‐dependent evacuees. A robust optimization model is proposed to determine the optimal pick‐up points for evacuees to assemble, and allocate available buses to transport the assembled evacuees between the pick‐up locations and different public shelters. The model is formulated as a mixed‐integer linear program and is solved via a cutting plane scheme. The numerical example based on the Sioux Falls network demonstrates that the robust plan yields lower total evacuation time and is reliable in serving the realized evacuee demand. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Large-scale disasters often trigger mass evacuation due to significant damages to urban systems. Understanding the evacuation and reentry (return) process of affected individuals is crucial for disaster management. Moreover, measuring the heterogeneity in the individuals' post-disaster behavior with respect to their socio-economic characteristics is essential for policy making. Recent studies have used large-scale location datasets collected from mobile devices to analyze post-disaster mobility patterns. Despite the availability of such data and the societal importance of the problem, no studies have focused on how income inequality affects the equity in post-disaster mobility. To overcome these research gaps, we overlay mobility data with income information from census to quantify the effects of income inequality on evacuation and reentry behavior after disasters, and the resulting spatial income segregation. Spatio-temporal analysis using location data of more than 1.7 million mobile phone users from Florida affected by Hurricane Irma reveal significant effects of income inequality on evacuation behavior. Evacuees with higher income were more likely to evacuate from affected areas and reach safer locations with less damage on housing and infrastructure. These differences were common among evacuees from both inside and outside mandatory evacuation zones. As a result of such effects of inequality, significant spatial income segregation was observed in the affected areas. Insights on the effects of income inequality on post-disaster mobility and spatial segregation could contribute to policies that better address social equity in pre-disaster preparation and post-disaster relief.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号