首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
A significant amount of research has focused on various types of evacuations, but little attention has been given to tsunami evacuation in the past. The purpose of this study was to investigate evacuee behaviors and factors affecting tsunami evacuation. The intention was also to analyze tsunami trip generation models. A data set of evacuation behavior was collected in an affected area, Baan Namkhem, Phang‐Nga Province, Thailand, following the Indian Ocean tsunami of December 26, 2004. The study was undertaken to determine evacuee response patterns in different conditions. Tsunami trip generation models were employed, using a binary logistic regression technique, to estimate the likelihood of evacuees being involved in each response pattern. It was found that the patterns of evacuee response to an emergency are different among the three conditions. Six factors (education level, ownership of the residence, distance to nearest seashore, disaster knowledge, number of household members, and status of respondent — permanent or transient) were found to be statistically significant. The results of this study can be used to improve the efficiency and effectiveness of future evacuation systems in Thailand.  相似文献   

2.
This study proposes an aggregate approach to model evacuee behavior in the context of no-notice evacuation operations. It develops aggregate behavior models for evacuation decision and evacuation route choice to support information-based control for the real-time stage-based routing of individuals in the affected areas. The models employ the mixed logit structure to account for the heterogeneity across the evacuees. In addition, due to the subjectivity involved in the perception and interpretation of the ambient situation and the information received, relevant fuzzy logic variables are incorporated within the mixed logit structure to capture these characteristics. Evacuation can entail emergent behavioral processes as the problem is characterized by a potential threat from the extreme event, time pressure, and herding mentality. Simulation experiments are conducted for a hypothetical terror attack to analyze the models’ ability to capture the evacuation-related behavior at an aggregate level. The results illustrate the value of using a mixed logit structure when heterogeneity is pronounced. They further highlight the benefits of incorporating fuzzy logic to enhance the prediction accuracy in the presence of subjective and linguistic elements in the problem.  相似文献   

3.
The purpose of this study is to explain the evacuee mode choice behavior of Miami Beach residents using survey data from a hypothetical category four hurricane to reveal different evacuees’ plans. Evacuation logistics should incorporate the needs of transit users and car-less populations with special attention and proper treatment. A nested logit model has been developed to explain the mode choice decisions for evacuees’ from Miami Beach who use non-household transportation modes, such as special evacuation bus, taxi, regular bus, riding with someone from another household and another type of mode denoted and aggregated as other. Specifically, the model explains that the mode choice decisions of evacuees’, who are likely to use different non-household transportation modes, are influenced by several determining factors related to evacuees’ socio-demographics, household characteristics, evacuation destination and previous experience. The findings of this study will help emergency planners and policy-makers to develop better evacuation plans and strategies for evacuees depending on others for their evacuation transportation.  相似文献   

4.
This paper adds partial household evacuation to the traditional binary evacuate/stay decision. Based on data from a survey of Jacksonville, FL residents after Hurricane Matthew, multinomial (MNL) and random parameter MNL models were developed to determine the influential factors and whether some variables’ effects are more nuanced than prior literature suggests. The random parameter model was preferred to the fixed parameters model. Variables significant in this model included injury concern, certainty about hurricane impact location, age, marital status, family cohesion, and living in mobile or detached homes. Greater injury concern results in lower likelihood of none of the household evacuating and greater likelihood of partial evacuation, but lower likelihood of full household evacuation. Similarly, greater certainty about hurricane impact increased the probability of partial household evacuation but decreased the probability of full evacuation. Respondent age had heterogenous effects; for 85.54% of respondents, additional years of age increased the likelihood of the household staying. Married households had a higher likelihood of staying or evacuating together. Similarly, greater family cohesion was associated with the household remaining together. Living in mobile homes decreased the likelihood that all of the household stays or evacuates and increased the probability of partial household evacuation. Living in a single-family detached home was associated with lower likelihood of all of the household staying or evacuating and a greater likelihood of a partial household evacuation. These findings can inform strategies that influence full or partial household evacuations, material requirements based on these decisions, and ways to reduce family risk.  相似文献   

5.
The effectiveness of transit-based emergency evacuation highly depends on the location of pick-up facilities, resource allocation, and management. These facilities themselves are often subject to service disruptions during or after the emergency. This paper proposes a reliable emergency facility location model that determines both pre-emergency facility location planning and the evacuation operations afterwards, while facilities are subject to the risk of disruptions. We analyze how evacuation resource availability leverages individual evacuees’ response to service disruptions, and show how equilibrium of the evacuee arrival process could be reached at a functioning pick-up facility. Based on this equilibrium, an optimal resource allocation strategy is found to balance the tradeoff between the evacuees’ risks and the evacuation agency’s operation costs. This leads to the development of a compact polynomial-size linear integer programming formulation that minimizes the total expected system cost from both pre-emergency planning (e.g., facility set-up) and the evacuation operations (e.g., fleet management, transportation, and exposure to hazardous surroundings) across an exponential number of possible disruption scenarios. We also show how the model can be flexibly used to plan not only pre-disaster evacuation but also post-disaster rescue actions. Numerical experiments and an empirical case study for three coastal cities in the State of Mississippi (Biloxi, Gulfport, and D’lberville) are conducted to study the performance of the proposed models and to draw managerial insights.  相似文献   

6.
Gehlot  Hemant  Sadri  Arif M.  Ukkusuri  Satish V. 《Transportation》2019,46(6):2419-2440

Hurricanes are costly natural disasters periodically faced by households in coastal and to some extent, inland areas. A detailed understanding of evacuation behavior is fundamental to the development of efficient emergency plans. Once a household decides to evacuate, a key behavioral issue is the time at which individuals depart to reach their destination. An accurate estimation of evacuation departure time is useful to predict evacuation demand over time and develop effective evacuation strategies. In addition, the time it takes for evacuees to reach their preferred destinations is important. A holistic understanding of the factors that affect travel time is useful to emergency officials in controlling road traffic and helps in preventing adverse conditions like traffic jams. Past studies suggest that departure time and travel time can be related. Hence, an important question arises whether there is an interdependence between evacuation departure time and travel time? Does departing close to the landfall increases the possibility of traveling short distances? Are people more likely to depart early when destined to longer distances? In this study, we present a model to jointly estimate departure and travel times during hurricane evacuations. Empirical results underscore the importance of accommodating an inter-relationship among these dimensions of evacuation behavior. This paper also attempts to empirically investigate the influence of social ties of individuals on joint estimation of evacuation departure and travel times. Survey data from Hurricane Sandy is used for computing empirical results. Results indicate significant role of social networks in addition to other key factors on evacuation departure and travel times during hurricanes.

  相似文献   

7.
The daily activity-travel patterns of individuals often include interactions with other household members, which we observe in the form of joint activity participation and shared rides. Explicit representation of joint activity patterns is a widespread deficiency in extant travel forecasting models and remains a relatively under-developed area of travel behavior research. In this paper, we identify several spatially defined tour patterns found in weekday household survey data that describe this form of interpersonal decision-making. Using pairs of household decision makers as our subjects, we develop a structural discrete choice model that predicts the separate, parallel choices of full-day tour patterns by both persons, subject to the higher level constraint imposed by their joint selection of one of several spatial interaction patterns, one of which may be no interaction. We apply this model to the household survey data, drawing inferences from the household and person attributes that prove to be significant predictors of pattern choices, such as commitment to work schedules, auto availability, commuting distance and the presence of children in the household. Parameterization of an importance function in the models shows that in making joint activity-travel decisions significantly greater emphasis is placed on the individual utilities of workers relative to non-workers and on the utilities of women in households with very young children. The model and methods are prototypes for tour-based travel forecasting systems that seek to represent the complex interaction between household members in an integrated model structure.  相似文献   

8.
In urban emergency evacuation, a potentially large number of evacuees may depend either on transit or other modes, or need to walk a long distance, to access their passenger cars. In the process of approaching the designated pick-up points or parking areas for evacuation, the massive number of pedestrians may cause tremendous burden to vehicles in the roadway network. Responsible agencies often need to contend with congestion incurred by massive vehicles emanating from parking garages, evacuation buses generated from bus stops, and the conflicts between evacuees and vehicles at intersections. Hence, an effective plan for such evacuation needs to concurrently address both the multi-modal traffic route assignment and the optimization of network signal controls for mixed traffic flows. This paper presents an integrated model to produce the optimal distribution of vehicle and pedestrian flows, and the responsive network signal plan for massive mixed pedestrian–vehicle flows within the evacuation zone. The proposed model features its effectiveness in accounting for multiple types of evacuation vehicles, the interdependent relations between pedestrian and vehicle flows via some conversion locations, and the inevitable conflicts between intersection turning vehicle and pedestrian flows. An illustrating example concerning an evacuation around the M&T stadium area has been presented, and the results indicate the promising properties of our proposed model, especially on reflecting the complex interactions between vehicle and pedestrian flows and the favorable use of high-occupancy vehicles for evacuation operations.  相似文献   

9.
Traffic evacuation is a critical task in disaster management. Planning its evacuation in advance requires taking many factors into consideration such as the destination shelter locations and numbers, the number of vehicles to clear, the traffic congestions as well as traffic road configurations. A traffic evacuation simulation tool can provide the emergency managers with the flexibility of exploring various scenarios for identifying more accurate model to plan their evacuation. This paper presents a traffic evacuation simulation system based on integrated multi-level driving-decision models which generate agents’ behavior in a unified framework. In this framework, each agent undergoes a Strategic, Cognitive, Tactical and Operational (SCTO) decision process, in order to make a driving decision. An agent’s actions are determined by a combination, on each process level, of various existing behavior models widely used in different driving simulation models. A wide spectrum of variability in each agent’s decision and driving behaviors, such as in pre-evacuation activities, in choice of route, and in the following or overtaking the car ahead, are represented in the SCTO decision process models to simulate various scenarios. We present the formal model for the agent and the multi-level decision models. A prototype simulation system that reflects the multi-level driving-decision process modeling is developed and implemented. Our SCTO framework is validated by comparing with MATSim tool, and the experimental results of evacuation simulation models are compared with the existing evacuation plan for densely populated Beijing, China in terms of various performance metrics. Our simulation system shows promising results to support emergency managers in designing and evaluating more realistic traffic evacuation plans with multi-level agent’s decision models that reflect different levels of individual variability of handling stress situations. The flexible combination of existing behavior and decision models can help generating the best evacuation plan to manage each crisis with unique characteristics, rather than resorting to a fixed evacuation plan.  相似文献   

10.
This paper develops a decision‐support model for transit‐based evacuation planning under demand uncertainty. Demand uncertainty refers to the uncertainty associated with the number of transit‐dependent evacuees. A robust optimization model is proposed to determine the optimal pick‐up points for evacuees to assemble, and allocate available buses to transport the assembled evacuees between the pick‐up locations and different public shelters. The model is formulated as a mixed‐integer linear program and is solved via a cutting plane scheme. The numerical example based on the Sioux Falls network demonstrates that the robust plan yields lower total evacuation time and is reliable in serving the realized evacuee demand. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This study seeks to online calibrate the parameters of aggregate evacuee behavior models used in a behavior‐consistent information‐based control module for determining information strategies for real‐time evacuation operations. It enables the deployment of an operational framework for mass evacuation that integrates three aspects underlying an evacuation operation: demand (evacuee behavior), supply (network management), and disaster characteristics. To attain behavior‐consistency, the control module factors evacuees' likely responses to the disseminated information in determining information‐based control strategies. Hence, the ability of the behavior models to predict evacuees' likely responses is critical to the effectiveness of traffic routing by information strategies. The mixed logit structure is used for the aggregate behavior models to accommodate the behavioral heterogeneity across the population. An online calibration problem is proposed to calibrate the random parameters in the behavior models by using the least square estimator to minimize the gap between the predicted network flows and unfolding traffic dynamics. Background traffic, an important but rarely studied issue for modeling evacuation traffic, is also accounted for in the proposed problem. Numerical experiments are conducted to illustrate the importance of the calibration problem for addressing the system consistency issues and integrating the demand, supply, and disaster characteristics for more efficient evacuation operations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Large-scale disasters often trigger mass evacuation due to significant damages to urban systems. Understanding the evacuation and reentry (return) process of affected individuals is crucial for disaster management. Moreover, measuring the heterogeneity in the individuals' post-disaster behavior with respect to their socio-economic characteristics is essential for policy making. Recent studies have used large-scale location datasets collected from mobile devices to analyze post-disaster mobility patterns. Despite the availability of such data and the societal importance of the problem, no studies have focused on how income inequality affects the equity in post-disaster mobility. To overcome these research gaps, we overlay mobility data with income information from census to quantify the effects of income inequality on evacuation and reentry behavior after disasters, and the resulting spatial income segregation. Spatio-temporal analysis using location data of more than 1.7 million mobile phone users from Florida affected by Hurricane Irma reveal significant effects of income inequality on evacuation behavior. Evacuees with higher income were more likely to evacuate from affected areas and reach safer locations with less damage on housing and infrastructure. These differences were common among evacuees from both inside and outside mandatory evacuation zones. As a result of such effects of inequality, significant spatial income segregation was observed in the affected areas. Insights on the effects of income inequality on post-disaster mobility and spatial segregation could contribute to policies that better address social equity in pre-disaster preparation and post-disaster relief.  相似文献   

13.
This paper presents a state-of-the practice neighborhood shopping travel demand model. The model structure is designed to incorporate decisions across five dimensions of shopping travel, including decisions of: (1) household tour frequency; (2) participating party; (3) shopping tour type; (4) mode, and (5) destination choices using a tour-based nested-logit model. As a neighborhood model, we have also captured the interrelated effects of three main factors associated with shopping travel decisions both within and outside of the neighborhood, including the residential location within the neighborhood, the neighborhood regional setting and the household structure. The model was validated using the travel data collected in three neighborhoods located in the Puget Sound region, WA. Results show that household socio-demographics have significant effects on the decisions for household tour frequency, mode and destination choices, while the characteristics of the traveling party have considerable impacts on the decisions for tour type. The level of service and the zone attractions influence decisions about mode and destination choices. The day of week variable (weekday versus weekend) is statistically significant in all models, indicating that weekday shopping travel decisions differ from weekend, across all five dimensions of interest. The paper concludes with a discussion about how the model can be used to examine policy-related neighborhood issues (e.g. accessibility).  相似文献   

14.
This study seeks to determine risk-based evacuation subzones for stage-based evacuation operations in a region threatened/affected by a disaster so that information-based evacuation strategies can be implemented in real-time for the subzone currently with highest evacuation risk to achieve some system-level performance objectives. Labeled the evacuation risk zone (ERZ), this subzone encompasses the spatial locations containing the population with highest evacuation risk which is a measure based on whether the population at a location can be safely evacuated before the disaster impacts it. The ERZ for a stage is calculated based on the evolving disaster characteristics, traffic demand pattern, and network supply conditions over the region in real-time subject to the resource limitations (personnel, equipment, etc.) of the disaster response operators related to implementing the evacuation strategies. Thereby, the estimated time-dependent lead time to disaster impact at a location and the estimated time-dependent clearance time based on evolving traffic conditions are used to compute evacuation risk. This time-unit measure of evacuation risk enables the ERZ concept to be seamlessly applied to different types of disasters, providing a generalized framework for mass evacuation operations in relation to disaster characteristics. Numerical experiments conducted to analyze the performance of the ERZ-based paradigm highlight its benefits in terms of better adapting to the dynamics of disaster impact and ensuring a certain level of operational performance effectiveness benchmarked against the idealized system optimal traffic pattern for the evacuation operation, while efficiently utilizing available disaster response resources.  相似文献   

15.
The goal of this paper is to develop a random-parameter hazard-based model to understand hurricane evacuation timing by individual households. The choice of departure time during disasters is a complex dynamic process and depends on the risk that the hazard represents, the characteristics of the household and the built environment features. However, the risk responses are heterogeneous across the households; this unobserved heterogeneity is captured through random parameters in the model. The model is estimated with data from Hurricane Ivan including households from Alabama, Louisiana, Florida and Mississippi. It is found that the variables related to household location, destination characteristics, socio-economic characteristics, evacuation notice and household decision making are key determinants of the departure time. As such the developed model provides some fundamental inferences about hurricane evacuation timing behavior.  相似文献   

16.
Joint household travel, with or without joint participation in an activity, constitutes a fundamental aspect in modelling activity-based travel behaviour. This paper examines joint household travel arrangements and mode choices using a utility maximising approach. An individual tour-based mode choice model is formulated contingent on the choice of joint tour patterns where joint household activities and shared ride arrangements are recognised as part of the joint household decision-making that influences the travel modes of each household member. Two models, one for weekend and one for weekday, are estimated using empirical data from the Sydney Household Travel Survey. The results show that weekend travel is characterised by a high joint household activity participation rate while weekday travel is distinguished by more intra-household shared ride arrangements. The arrangements of joint household travel are highly associated with travel purpose, social and mobility constraints and household resources. On weekends, public transport is mainly used by captive users (i.e., no-car households and students) and its share is about half of that on weekdays. Also, the value of travel time savings (VOTs) are found to be higher on weekends than on weekdays, running entirely counter to the common belief that weekend VOTs are lower than weekday VOTs. This paper highlights the importance of studying joint household travel and using different transport management measures for alleviating traffic congestion on weekdays and weekends.  相似文献   

17.
This article describes a simple, rapid method for calculating evacuation time estimates (ETEs) that is compatible with research findings about evacuees’ behavior in hurricanes. This revision of an earlier version of the empirically based large scale evacuation time estimate method (EMBLEM) uses empirical data derived from behavioral surveys and allows local emergency managers to calculate ETEs by specifying four evacuation route system parameters, 16 behavioral parameters, and five evacuation scope/timing parameters. EMBLEM2 is implemented within a menu-driven evacuation management decision support system (EMDSS) that local emergency managers can use to calculate ETEs and conduct sensitivity analyses to examine the effects of plausible variation in the parameters. In addition, they can run EMDSS in real time (less than 10 min of run time) to recalculate ETEs while monitoring an approaching hurricane. The article provides an example using EMDSS to calculate ETEs for San Patricio County Texas and discusses directions for further improvements of the model.  相似文献   

18.
Although substantial literature exists on understanding hurricane evacuation behavior, few studies have developed models that can be used for predicting evacuation rates in future events. For this paper, we develop new ordered probit models for evacuation using survey data collected in the hurricane-prone state of North Carolina in 2011 and 2012. Since all covariates in the models are available from the census or based on location, the new models can be applied to predict evacuation rates for any future hurricane. The out-of-sample predictive power of the new models are evaluated at the individual household level using cross validation, and the aggregated level using available data from Hurricane Irene (2011), Hurricane Isabel (2003) and Hurricane Floyd (1999). Model results are also compared with an existing participation rate model, and a logistic regression model available from the literature. Results at the individual household level suggests approximately 70% of households’ evacuation behavior will be predicted correctly. Errors are evenly divided between false positives and false negatives, and with accuracy increasing to 100% as the percentage of people who actually evacuate goes to zero or all and decreasing to about 50% when the population is divided and about half of all households actually evacuate. Aggregate results suggest the new models compare favorably to the available ones, with average aggregate evacuation rate errors of five percentage points.  相似文献   

19.
An effective evacuation of buildings is critical to minimize casualties due to natural or anthropogenic hazards. Building evacuation models help in preparing for future events and shed light on possible shortcomings of current evacuation designs. However, such models are seldom compared or validated with real evacuations, which is a critical step in assessing their predictive capacities. This research focuses on the evacuation of a K-12 (kindergarten to 12th grade) school located within the tsunami inundation zone of Iquique, Chile. An agent-based evacuation model was developed to simulate the evacuation of approximately 1500 children and staff from the school during a global evacuation drill carried out for the entire city. The model simulates the motions of heterogeneous human agents, and the simulations were validated using video analysis of the real event. Resulting error estimations between predicted versus measured flow rates and evacuation times are 13.5% and 5.9%, respectively. The good agreement between the simulated and measured values can be attributed to the known distribution of students and staff at the start of the drill, and their known exposure to emergency preparedness protocols. However, the results presented herein show that this mathematical evacuation model can be used for logistical changes in the emergency planning.  相似文献   

20.
Understanding the spatio-temporal road network accessibility during a hurricane evacuation—the level of ease of residents in an area in reaching evacuation destination sites through the road network—is a critical component of emergency management. While many studies have attempted to measure road accessibility (either in the scope of evacuation or beyond), few have considered both dynamic evacuation demand and characteristics of a hurricane. This study proposes a methodological framework to achieve this goal. In an interval of every six hours, the method first estimates the evacuation demand in terms of number of vehicles per household in each county subdivision (sub-county) by considering the hurricane’s wind radius and track. The closest facility analysis is then employed to model evacuees’ route choices towards the predefined evacuation destinations. The potential crowdedness index (PCI), a metric capturing the level of crowdedness of each road segment, is then computed by coupling the estimated evacuation demand and route choices. Finally, the road accessibility of each sub-county is measured by calculating the reciprocal of the sum of PCI values of corresponding roads connecting evacuees from the sub-county to the designated destinations. The method is applied to the entire state of Florida during Hurricane Irma in September 2017. Results show that I-75 and I-95 northbound have a high level of congestion, and sub-counties along the northbound I-95 suffer from the worst road accessibility. In addition, this research performs a sensitivity analysis for examining the impacts of different choices of behavioral response curves on accessibility results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号