首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
车桥耦合振动系统模型下桥梁冲击效应研究   总被引:3,自引:1,他引:2  
把桥梁和车辆看作车桥耦合振动体系的两个分离子系统,基于ANSYS软件建立了3种车辆和桥梁的有限元模型。考虑桥面不平度影响,以车轮与桥梁接触点的位移作为协调条件,采用分离迭代算法计算了车桥耦合系统的动力响应。采用快速傅立叶逆变换的方法,应用三角级数叠加模拟了5种等级的桥面不平度及其速度项。通过对一简支梁桥车桥耦合振动的数值模拟,研究了车辆模型、桥面状况和车速对桥梁冲击效应的影响。结果表明:不同车辆模型对桥梁的冲击效应差别很大,桥面不平度对冲击效应的影响较车速大,桥梁的位移冲击效应大于内力冲击效应。因此,设计分析时宜采用能充分模拟车辆特性的复杂模型,移动荷载冲击系数取值建议以位移冲击系数为基准。  相似文献   

2.
桥面不平度是影响车桥耦合振动的主要因素之一。研究了基于Fourier逆变换法在路面功率谱已知的情况下,构造路面不平度随机序列的算法,通过与三角级数叠加法对比,结果表明,Fourier逆变换法模拟的路面不平度功率谱与预期谱能更好的吻合。同时,根据实测的上饶乔木湾乐安河大桥桥面不平度数据,计算该桥面不平度功率谱密度并与国家标准GB/T7031-86进行对比,结果显示该桥桥面处于B级到C级之间,这为精确计算车桥耦合振动提供了有利的理论依据。  相似文献   

3.
为研究桥面非平稳随机激励对车桥耦合系统的影响,采用滤波白噪声法生成单轮桥面非平稳随机激励时域模型,结合车辆前后轮的时间滞后和左右轮的相干关系,生成车辆六轮相关的桥面非平稳随机激励样本并验证了样本的有效性。分析一座3×30 m连续T梁桥和一辆三轴重载汽车在非平稳桥面激励下的车桥耦合振动响应,现场实测桥面不平度,并采用传统蒙特卡罗法对车辆和桥梁的振动响应进行计算。研究结果表明:根据车辆六轮间的时间滞后关系和相干函数关系所建立的桥面非平稳随机激励模型满足目标相干函数和功率谱密度,且时间滞后关系明确,模型有效可靠;当车辆加速行驶时,因桥面不平顺引起的非平稳随机激励信号的幅值随速度的增大而增大,非平稳激励下的桥梁和车辆振动响应大于平稳激励所产生的振动响应;非平稳激励对桥梁振动响应的均值影响很小,但对车辆振动响应均值影响较大,车辆振动对桥面随机激励更敏感;非平稳激励对车辆和桥梁振动响应标准差的影响较大,且振动响应标准差随着车辆加速度的提高而增大;研究车桥耦合振动很有必要考虑车辆非匀速行驶而引起的桥面非平稳随机激励,建议车辆匀速通过桥梁,尽量避免在桥上加速行驶。  相似文献   

4.
大跨径钢桥面铺装层车辆动响应影响因素分析   总被引:1,自引:0,他引:1  
从耦合振动的角度出发,研究大跨径钢桥面铺装层在车辆随机动荷载作用下的响应机制.将汽车等效为2自由度5参数模型,考虑桥梁表面不平顺产生的随机激励,建立车-钢桥面铺装耦合振动分析模型.利用模态分析与时变系数常微分方程求解方法,分析钢桥面铺装在车辆随机动荷载作用下的动力响应分布规律.定义由铺装层竖向位移、拉应力和拉应变表示的动力放大系数,研究车速、桥面不平度、铺装层开裂损伤和粘结层滑移等对动力放大系数的影响.结果表明,路面不平度、粘结层滑移是影响动力放大系数的主要因素,在进行大跨径钢桥面铺装结构设计时可考虑动力放大系数为1.5.  相似文献   

5.
为研究曲线梁桥在匀变速车辆作用下的车桥耦合效应,以干海子特大桥第1联为研究对象,通过建立二轴七自由度车辆整车模型,采用有限元分析方法,分析了匀变速行驶车辆加速度、桥面不平度、车辆离心力等参数对曲线钢管混凝土桁架梁桥动力响应的影响。研究结果表明:匀加速行驶状态下曲线钢管混凝土桥梁动力响应得到增强,桥梁外弧侧扭转趋势加大;匀加速行驶车辆加速度、离心力、桥面不平度对桥梁结构影响较大;桥面不平整度能够显著影响结构竖向动位移响应;曲线桥梁考虑离心率作用能够更加准确反映结构真实响应;匀加速车辆作用下该桥梁结构动位移冲击系数为匀速车辆状态下实测值的3~4倍,为规范取值的6~9倍;由于桥梁结构存在某一特征速度使得结构达到共振效应,各种动力响应在此速度处发生由增大到减小的突变。  相似文献   

6.
以某大型钢管混凝土拱桥为对象,采用经动力试验验证的自编车桥耦合振动分析程序,进行了多组随机不平度样本下的车桥动力响应分析。根据分析结果,对不同桥面状况和车速条件下桥梁的动力冲击效应进行了统计分析。分析结果表明:车速、不平度等级确定时冲击系数服从正态分布。桥面状况等级对动力冲击效应的均值和均方差影响明显,不同保证率下车辆冲击系数差异较大。根据桥梁重要性等级,按照统计分析方法确定冲击系数,将有效提高车辆冲击系数取值的合理性和科学性。  相似文献   

7.
面向桥面铺装动力响应分析的多尺度桥梁模型   总被引:1,自引:0,他引:1  
为了解决传统桥面铺装设计方法不能反映在行车荷载与桥梁振动特性耦合作用条件下的铺装动力响应问题,提出一种面向桥面铺装动力响应分析的多尺度桥梁模型的构建新方法。该方法首先综合考虑桥面铺装和桥梁结构特性对建模的要求,建立整桥有限元仿真模型,然后构建精细化桥面铺装体系局部梁段模型,最后通过动力子结构方法将整桥结构与桥面铺装局部结构衔接,并以某大跨径悬索桥为例进行实例分析。结果表明:由于考虑整桥动力特性和不平度的影响,将使计算结果(不平度等级为A)比静力计算结果大10%~15%,并且随着不平度的增加而非线性增加;采用该模型的构建方法可以避免现行桥面铺装设计中采用静载偏不安全的缺点。  相似文献   

8.
考虑车辆荷载对桥梁结构的冲击作用是现代桥梁设计中的重要内容之一。为了研究桥梁结构在车桥耦合振动情况下所受到的冲击效应,以润扬长江大桥北汊桥主桥为例进行了分析。分别利用有限元法和动力平衡原理建立了桥梁结构动力分析模型和车辆的多刚体动力学模型。以桥面不平顺为激振源,借助于车辆和桥梁两个子系统之间力和位移的协调条件,用Newmark-β法求解车桥系统的振动微分方程,分析桥梁结构的动力响应和冲击系数。计算结果表明,桥面不平顺对桥梁冲击系数有明显的影响,车速的增加使剪力冲击系数显著增大,车重的增加使各种冲击系数均有所降低,车辆运行路线与桥梁中心线距离的增大使扭矩冲击系数增加。  相似文献   

9.
分别建立了具有7个自由度的3D整车模型的振动方程和连续曲线梁桥的运动方程,将车辆和曲线梁桥分为相互联系的两个振动子系统——车辆和桥梁系统。利用有限元法及模态叠加综合技术,以车轮与桥面相互接触处保持不脱离为位移协调条件,推导出车桥耦合振动方程,并运用Newmark-β数值方法对耦合系统进行迭代求解。以一实际工程桥梁为背景,分析该曲线梁桥在单车荷载作用时,不同行车速度、不同路面等级的振动响应。结果表明:车速对曲线梁桥的竖向挠度的影响很大,但对横向振动的影响比较小;在同一车速情况下,路面的不平度对曲线桥梁的冲击影响显著,路况越差,冲击越大;曲率半径越大,桥梁的横向振动响应越小,而竖向振动响应却越大。  相似文献   

10.
为研究车-桥耦合动力作用下的车辆与桥梁力学行为,基于ABAQUS有限元软件建立二自由度四分之一车辆模型和简支桥模型。车辆模型考虑橡胶轮胎超弹性,桥面铺装层考虑沥青混合料黏弹性。基于轮胎与桥面铺装层接触关系,建立车-桥耦合动力模型,采用中心差分法和有限元理论求解车辆和桥梁时域响应。结果表明:通过与现场桥面铺装层上面层跨中竖向应力测量值比较,验证所建车-桥耦合动力模型具有一定可行性;未添加路面不平度上面层跨中最大竖向压应力、最大横向压应力、最大纵向压应力分别为0.608,0.283,0.338 MPa,添加路面不平度上面层跨中最大竖向压应力、最大横向压应力、最大纵向压应力分别为1.327,0.652,0.706 MPa,分别增大118.257%,130.389%,108.876%;未添加路面不平度最小和最大车辆悬架弹力分别为36.178,59.322 kN,变化幅度为63.973%,添加路面不平度最小和最大悬架弹力分别为33.738,60.859 kN,变化幅度为80.387%;未添加路面不平度纵梁跨中最大竖向压应力、最大横向拉应力、最大纵向压应力分别为0.282,0.193,0.159 MPa,添加路面不平度分别为0.449,0.418,0.348 MPa,分别增加59.220%,116.580%,118.868%。添加路面不平度,车-桥耦合动力效应增强,车辆与桥梁各项响应均增大。  相似文献   

11.
把车辆和桥梁结构看成相互作用的两个子系统,分别建立二者的力学模型和振动微分方程。在求解过程中,通过位移协调条件和两个子系统间相互作用力相等的原则把两个子系统的振动微分方程耦合起来。利用有限元分析软件ANYSYS的二次开发语言APDL编写了求解车桥系统耦合振动微分方程的迭代计算命令流。以桥面不平顺为激振源,分析了主跨为550 m的福建长门大桥当多车辆通过时在各级桥面不平顺情况下的动力响应。计算结果表明,随着桥面不平顺程度的增加,桥梁结构和车体的动力响应均呈非线性增大,其中桥梁主跨跨中位移、主跨最外侧拉索应力和车辆加速度变化显著。  相似文献   

12.
周强 《中外公路》2012,(3):199-202
桥面不平顺是车辆-桥梁耦合系统振动的主要影响因素之一,引入路面不平度来模拟桥面不平顺,假定路面不平度是具有零均值、各态历经的平稳随机过程,且服从高斯概率分布。基于FORTRAN平台编制了模拟桥面不平顺的仿真程序BDR,采用FFT法及谐波法模拟了按国家标准GB/T 7031-86划分的B、C级桥面不平顺曲线。结果表明:该模型能够描述复杂且不规则的路面形状,适用于任意谱密度函数的平稳随机过程,适应性良好。  相似文献   

13.
为分析桥面不平顺状态下含表面裂纹时桥-车耦合振动,利用1/4车辆模型,基于桥面不平顺产生的随机激励,运用Hamilton原理建立桥面不平顺状态下含裂纹桥-车耦合系统动力方程,应用Runge-kutta法对方程进行求解,分析不同等级桥面不平整度下,裂纹深度、车速、桥车质量比等参数对桥梁结构位移的影响。结果表明,随着裂纹深度的增加,梁体跨中位移峰值增大,且考虑桥面不平顺状况时梁体跨中位移响应更复杂。  相似文献   

14.
高墩钢管混凝土曲线桁架梁桥作为一种新型桥梁结构形式,其动力特性相对于常规梁桥具有特殊性,车辆作用引起的桥梁振动十分复杂。为研究该类桥梁在车辆作用下的动力响应特征和规律,以我国首座该类桥梁示范工程为背景,推导建立了曲线梁桥车桥耦合振动分析模型,编制了相应的分析程序并利用荷载试验结果予以验证。采用该车桥振动计算模型分析了桥面平整度、车速、车辆作用位置和车辆数等因素对桥梁整体和局部动力冲击效应的影响。结果表明:现行设计规范低估了该类桥的车辆冲击效应;当桥面平整度为好时,整体和局部动力放大系数分别为规范设计值的近10倍和3倍;多种构件的动力放大系数差别显著;跨中横向振动约为竖向振动的25%,该类高墩曲线梁桥在车辆作用下的横向振动问题值得关注。  相似文献   

15.
车桥耦合振动是影响行车舒适性的主要因素,为了分析通行车辆的安全和行车的舒适性,对药湖高架桥进行了车桥耦合振动分析。采用模态综合分析方法和Newmark-β数值积分方法分别计算了不同桥面不平度、不同车辆行使速度情况下的车辆响应,结合微型轿车模型,给出了舒适性评价。  相似文献   

16.
多片梁组成的简支梁桥车桥耦合振动响应研究   总被引:3,自引:0,他引:3  
根据多片梁组成的装配式简支梁桥的特点,横向梁之间采用铰接,车辆模拟为九自由度整车模型,桥面不平顺激励采用三角级数叠加法模拟,建立了该类桥梁的车桥耦合振动响应分析模型,结合模态叠加法和Newmark逐步积分法求解系统方程,研究了移动车辆荷载作用下多片简支梁桥的振动响应及冲击系数.以某一实际工程桥梁为背景,分析了该桥在单车荷载作用时,不同行车速度、不同路面等级以及不同横向作用位置下的振动响应及冲击系数;研究了车辆自振频率的变化对桥梁振动响应的影响.研究结果表明,边梁冲击系数比中梁大,路面等级是影响汽车活载冲击系数大小的重要因素.  相似文献   

17.
用结构动力学理论,建立了车辆过桥时车桥耦合振动响应计算模型.采用Newmark-β积分法获得车桥耦合振动响应数值解.讨论了车辆、车速、桥面不平顺、桥的阻尼等因素对桥梁冲击系数的影响.分析表明,在设计中应综合考虑这些参数对车桥耦合振动的影响.  相似文献   

18.
为了解决板梁桥铰接缝健康状态难以诊断的难题,以桥梁在车辆荷载作用下的动力响应频谱定义频谱形状差异性指数,并结合频率构造目标函数,提出了一种基于桥梁在线动力响应的铰接缝损伤定量评估方法。该方法以铰接缝横梁刚度整体下降程度作为损伤指数,通过基于L-M准则的有限元模型修正方法实现对装配式板梁桥铰接缝损伤的定位和定量分析。采用车-桥耦合振动分析方法计算桥梁的在线动力响应,并避开板梁桥1阶竖弯模态,选择包含桥梁横弯和扭转模态在内的频率段分析响应频谱形状差异性指数。数值分析了铰接缝损伤位置、损伤程度、主梁车辆横向随机位置、车辆速度和路面不平度等因素对铰接缝损伤识别结果的影响,并进一步分析了主梁和铰接缝同时存在损伤时的识别结果。研究结果表明:所提损伤评估方法抗噪能力强,损伤识别结果受车辆速度、车辆横桥向随机位置和路面不平度等因素的影响较小,识别结果较为准确;该方法对单个或多个位置铰接缝不同程度的损伤均可正确识别,误差较小,还可同时识别主梁和铰接缝损伤。对一座装配式板梁桥进行了现场试验分析,基于所提方法的板梁桥评估结果和桥梁现场情况相符,从而从应用角度证明了所提铰接缝损伤评估方法的准确性和可靠性。  相似文献   

19.
为了对采用吊拉主动加固方法的钢筋混凝土系杆拱桥进行基于车桥耦合振动分析的加固效果评价,首先,利用ANSYS软件建立空间梁、板和杆单元的桥梁结构有限元梁格模型,并选取三轴9自由度的车辆模型及路面不平度等级B分别模拟实际车辆及桥面状态,将梁格模型调入BDANS软件,通过数值模拟车、桥动力响应,计算得到桥梁动位移、加速度响应,研究加固前后桥梁控制截面所受到的动力冲击作用;然后,分析桥梁加固前后不同位置加速度响应的频谱特征;最后,对依托工程动力特征、动态响应及车桥耦合作用的实测值与理论值进行比较分析。结果表明:通过该方法加固后结构的竖向自振频率较加固前均有提升,但提升幅度较小;加固前后结构不同位置的动力响应随车速增加呈逐渐增大的趋势,且车速在60~80 km·h-1时,加固后结构跨中截面的动力响应降幅最大;加固后结构控制截面的加速度均方根值小于加固前,根据其变化幅值建议车辆通过加固后桥梁结构的速度为60 km·h-1,以保证行人过桥时的体感舒适度、通行效率及行车安全;通过理论值与实测值的对比分析,验证了基于车桥耦合振动分析方法对桥梁结构加固后行车性能评价的有效性。  相似文献   

20.
以福新桥为背景,分析了车道位置、桥面铺装层平整度、车速等因素对桥梁动力响应的影响,并对桥面动力响应频谱特征进行分析,得到一些结论,可为进一步研究公路车桥耦合振动提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号