首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This paper investigates strategies that could achieve an 80% reduction in transportation emissions from current levels by 2050 in the City of Philadelphia. The baseline daily lifecycle emissions generated by road transportation in the Greater Philadelphia Region in 2012 were quantified using trip information from the 2012 Household Travel Survey (HTS). Emissions were projected to the year 2050 accounting for population growth and trends in vehicle technology for both the Greater Philadelphia Region and the City of Philadelphia. The impacts of vehicle technology and shifts in travel modes on greenhouse gas (GHG) emissions in 2050 were quantified using a scenario approach. The analysis of 12 different scenarios suggests that 80% reduction in emissions is technically feasible through a combination of active transportation, cleaner fuels for public transit vehicles, and a significant market penetration of battery-electric vehicles. The additional electricity demand associated with greater use of electric vehicles could amount to 10.8 TWh/year. The use of plug-in hybrid electric vehicles (PHEV) shows promising results due to high reductions in GHG emissions at a potentially manageable cost.  相似文献   

2.
This study examines the impact of using hybrid vehicles for passenger transportation on carbon emissions in the Japanese energy system. A partial equilibrium model of the energy sector has been developed to forecast changes in the energy system out to the year 2040. The model can account for changes in technology capacities, fuels, and consumption in response to policy initiatives, such as taxes. We find that hybrid vehicles are more efficient in reducing carbon dioxide emission than conventional vehicles. Hybrid vehicles have a great impact on reducing carbon emissions when BTU taxes are imposed, which in turn has the advantage of encouraging a more diverse set of technologies and fuels.  相似文献   

3.
This paper introduces a new double standard model (DSM), along with a genetic algorithm (GA), for solving the emergency medical service (EMS) vehicle allocation problem that ensures acceptable service reliability with limited vehicle resources. Without loss of generality, the model is formulated to address emergency services to human injuries caused by vehicle crashes at intersections within an urban street network. The EMS fleet consists of basic life support (BLS) and advanced life support (ALS) vehicles suited for treating crashes with different severity levels within primary and secondary service coverage standards corresponding to extended response times. The model ensures that all demand sites are covered by at least one EMS vehicle within the secondary standard and a portion of which also meets the service reliability requirement. In addition, a portion of demand sites can be covered by at least one of each type of EMS vehicles within the primary standard. Meanwhile, it aims to achieve maximized coverage of demand sites within the primary standard that complies with the required service reliability. A computational experiment is conducted using 2004–2010 data on top two hundred high crash intersections in the city of Chicago as demand sites for model application. With an EMS fleet size of 15 BLS and 60 ALS ambulances maintained by the Chicago Fire Department, at best 92.4–95.5% of demand could be covered within the secondary standard at 90% of service reliability; and 65.5–68.4% of high severity demand and 50.2–54.5 low severity demand could be covered within the primary standard at 90% of service reliability. The model can help optimize EMS vehicle allocation in urban areas.  相似文献   

4.
Frequency setting takes place at the strategic and tactical planning stages of public transportation systems. The problem consists in determining the time interval between subsequent vehicles for a given set of lines, taking into account interests of users and operators. The result of this stage is considered as input at the operational level. In general, the problem faced by planners is how to distribute a given fleet of buses among a set of given lines. The corresponding decisions determine the frequency of each line, which impacts directly on the waiting time of the users and operator costs. In this work, we consider frequency setting as the problem of minimizing simultaneously users' total travel time and fleet size, which represents the interest of operators. There is a trade‐off between these two measures; therefore, we face a multi‐objective problem. We extend an existing single‐objective formulation to account explicitly for this trade‐off, and propose a Tabu Search solving method to handle efficiently this multi‐objective variant of the problem. The proposed methodology is then applied to a real medium‐sized problem instance, using data of Puerto Montt, Chile. We consider two data sets corresponding to morning‐peak and off‐peak periods. The results obtained show that the proposed methodology is able to improve the current solution in terms of total travel time and fleet size. In addition, the proposed method is able to efficiently suggest (in computational terms) different trade‐off solutions regarding the conflicting objectives of users and operators. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Carsharing programs that operate as short-term vehicle rentals (often for one-way trips before ending the rental) like Car2Go and ZipCar have quickly expanded, with the number of US users doubling every 1–2 years over the past decade. Such programs seek to shift personal transportation choices from an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles will address many current carsharing barriers, including users’ travel to access available vehicles.This work describes the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use. The model operates by generating trips throughout a grid-based urban area, with each trip assigned an origin, destination and departure time, to mimic realistic travel profiles. A preliminary model run estimates the SAV fleet size required to reasonably service all trips, also using a variety of vehicle relocation strategies that seek to minimize future traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying travelers from one destination to the next. During each 5-min interval, some unused SAVs relocate, attempting to shorten wait times for next-period travelers.Case studies vary trip generation rates, trip distribution patterns, network congestion levels, service area size, vehicle relocation strategies, and fleet size. Preliminary results indicate that each SAV can replace around eleven conventional vehicles, but adds up to 10% more travel distance than comparable non-SAV trips, resulting in overall beneficial emissions impacts, once fleet-efficiency changes and embodied versus in-use emissions are assessed.  相似文献   

6.
In this study, we allow using alternative transportation modes and different types of vehicles in the hub networks to be designed. The aim of the problem is to determine the locations and capacities of hubs, which transportation modes to serve at hubs, allocation of non-hub nodes to hubs, and the number of vehicles of each type to operate on the hub network to route the demand between origin-destination pairs with minimum total cost. Total cost includes fixed costs of establishing hubs with different capacities, purchasing and operational costs of vehicles, transportation costs, and material handling costs. A mixed-integer programming model is developed and a variable neighborhood search algorithm is proposed for the solution of this problem. The heuristic algorithm is tested on instances from the Turkish network and CAB data set. Extensive computational analyzes are conducted in order to observe the effects of changes in various problem parameters on the resulting hub networks.  相似文献   

7.
Abstract

On-road light-duty vehicles (LDVs) play an important role in contributing to urban air pollution. Although vehicles are getting cleaner, regional growth in vehicle population and vehicle miles traveled would somewhat offset California's efforts in transportation pollution reduction. To better understand the role of LDVs in future air pollution, we conduct a case study for Sacramento, California, and investigate future trends in urban air pollution attributable to the light-duty fleet. Results indicate that ambient concentrations of CO, NO x , and total organic gases (TOGs) caused by future light-duty fleets would dramatically decrease over coming years. The resulting concentrations in 2030 might be as low as approximately 20% of the 2005 concentrations. These reflect the improvements in vehicle/fuel technologies and standards in California. However, the future particulate matter (PM10) pollution could be slightly worse than that caused by the 2005 fleet. This is a result of the growing fleet-average emission factors of particulates from 2005 to 2030. For purposes of future particulate control, more attention needs to be paid to LDVs, besides heavy-duty vehicles.  相似文献   

8.
The vehicle population of Beijing is sharply increasing at an average annual rate of 14.5%, causing severe transportation and environmental problems. The Beijing municipal government and the public have worked hard to control vehicular emissions since 1995. Strategies and measures have been introduced to regulate land use and traffic planning, emission control of in-use vehicles and new vehicles, fuel quality improvement, introduction of clean fuel vehicle technology and fiscal incentives. New development plans for Beijing will change the transportation structure by encouraging public transportation. For in-use vehicles, the I/M program has employed ASM tests since early 2003 and the government has encouraged the retirement of high-emission vehicles. For new vehicles, Beijing introduced Euro 1 and Euro 2 emission standards in early 1999 and 2003, respectively. It is also confirmed that Euro 3 standards will be introduced in 2005. At the same time, the fuel quality in Beijing was improved significantly, by banning lead and reducing sulfur among other changes. CNG and LPG were introduced in 1999 and are used in buses and taxis. Today Beijing has the largest CNG bus fleet in the world with more than 2000 dedicated CNG buses. Beijing has also focused on fiscal incentives such as tax deductions for new vehicles meeting enhanced emission standards to encourage their sales. These strategies and measures have had an impact on the control of vehicular emissions. Despite the rapid increase of the vehicle population by 60% between 1998 and 2003, total vehicular emissions have not increased. With the enhancement of vehicular emission control, the air quality in Beijing is improving as the city strives to its goal for a “Green Olympics”.  相似文献   

9.
The growth of vehicle sales and use internationally requires the consumption of significant quantities of energy and materials, and contributes to the deterioration of air-quality and climate conditions. Advanced propulsion systems and electric drive vehicles have substantially different characteristics and impacts. They require life cycle assessments and detailed comparisons with gasoline powered vehicles which, in turn, should lead to critical updates of traditional models and assumptions. For a comprehensive comparison of advanced and traditional light duty vehicles, a model is developed that integrates external costs, including emissions and time losses, with societal and consumer life cycle costs. Life cycle emissions and time losses are converted into costs for seven urban light duty vehicles. The results, which are based on vehicle technology characteristics and transportation impacts on environment, facilitate vehicle comparisons and support policy making in transportation. Substantially, more sustainable urban transportation can be achieved in the short-term by promoting policies that increase vehicle occupancy; in the intermediate-term by increasing the share of hybrid vehicles in the car market and in the long-term by the widespread use of electric vehicles. A sensitivity-analysis of life cost results revealed that vehicle costs change significantly for different geographical areas depending on vehicle taxation, pricing of gasoline, electric power and pollution. Current practices in carbon and air quality pricing favor oil and coal based technologies. However, increasing the cost of electricity from coal and other fossil fuels would increase the variable cost for electric vehicles, and tend to favor the variable cost of hybrid vehicles.  相似文献   

10.
This paper introduces a fleet size and mix dial-a-ride problem with multiple passenger types and a heterogeneous fleet of reconfigurable vehicles. In this new variant of the dial-a-ride problem, en-route modifications of the vehicle’s inner configuration are allowed. The main consequence is that the vehicle capacity is defined by a set of configurations and the choice of vehicle configuration is associated with binary decision variables.The problem is modeled as a mixed-integer program derived from the model of the heterogeneous dial-a-ride problem. Vehicle reconfiguration is a lever to efficiently reduce transportation costs, but the number of passengers and vehicle fleet setting make this problem intractable for exact solution methods. A large neighborhood search metaheuristic combined with a set covering component with a reactive mechanism to automatically adjust its parameters is therefore proposed. The resulting framework is evaluated against benchmarks from the literature, used for similar routing problems. It is also applied to a real case, in the context of the transportation of disabled children from their home to medical centers in the city of Lyon, France.  相似文献   

11.
This paper investigates the market potential and environmental benefits of replacing internal combustion engine (ICE) vehicles with battery electric vehicles (BEVs) in the taxi fleet in Nanjing, China. Vehicle trajectory data collected by onboard global positioning system (GPS) units are used to study the travel patterns of taxis. The impacts of charger power, charging infrastructure coverage, and taxi apps on the feasibility of electric taxis are quantified, considering taxi drivers’ recharging behavior and operating activities. It is found that (1) depending on the charger power and coverage, 19% (with AC Level 2 chargers and 20% charger network coverage) to 56% (with DC chargers and 100% charger network coverage) of the ICE vehicles can be replaced by electric taxis without driving pattern changes; (2) by using taxi apps to find nearby passengers and charging stations, drivers could utilize the empty cruising time to charge the battery, which may increase the acceptance of BEVs by up to 82.6% compared to the scenario without taxi apps; and (3) tailpipe emissions in urban areas could be significantly reduced with taxi electrification: a mixed taxi fleet with 46% compressed-natural-gas-powered (CNG) and 54% electricity-powered vehicles can reduce the tailpipe emissions by 48% in comparison with the fleet of 100% CNG taxis.  相似文献   

12.
Vehicles typically deteriorate with accumulating mileage and emit more tailpipe air pollutants per mile. Although incentive programs for scrapping old, high-emitting vehicles have been implemented to reduce urban air pollutants and greenhouse gases, these policies may create additional sales of new vehicles as well. From a life cycle perspective, the emissions from both the additional vehicle production and scrapping need to be addressed when evaluating the benefits of scrapping older vehicles. This study explores an optimal fleet conversion policy based on mid-sized internal combustion engine vehicles in the US, defined as one that minimizes total life cycle emissions from the entire fleet of new and used vehicles. To describe vehicles' lifetime emission profiles as functions of accumulated mileage, a series of life cycle inventories characterizing environmental performance for vehicle production, use, and retirement was developed for each model year between 1981 and 2020. A simulation program is developed to investigate ideal and practical fleet conversion policies separately for three regulated pollutants (CO, NMHC, and NOx) and for CO2. According to the simulation results, accelerated scrapping policies are generally recommended to reduce regulated emissions, but they may increase greenhouse gases. Multi-objective analysis based on economic valuation methods was used to investigate trade-offs among emissions of different pollutants for optimal fleet conversion policies.  相似文献   

13.
This study provides a comprehensive comparison of well-to-wheel (WTW) energy demand, WTW GHG emissions, and costs for conventional ICE and alternative passenger car powertrains, including full electric, hybrid, and fuel cell powertrains. Vehicle production, operation, maintenance, and disposal are considered, along with a range of hydrogen production processes, electricity mixes, ICE fuels, and battery types. Results are determined based on a reference vehicle, powertrain efficiencies, life cycle inventory data, and cost estimations. Powertrain performance is measured against a gasoline ICE vehicle. Energy carrier and battery production are found to be the largest contributors to WTW energy demand, GHG emissions, and costs; however, electric powertrain performance is highly sensitive to battery specific energy. ICE and full hybrid vehicles using alternative fuels to gasoline, and fuel cell vehicles using natural gas hydrogen production pathways, are the only powertrains which demonstrate reductions in all three evaluation categories simultaneously (i.e., WTW energy demand, emissions, and costs). Overall, however, WTW emission reductions depend more on the energy carrier production pathway than on the powertrain; hence, alternative energy carriers to gasoline for an ICE-based fleet (including hybrids) should be emphasized from a policy perspective in the short-term. This will ease the transition towards a low-emission fleet in Switzerland.  相似文献   

14.
Recently, electric vehicles are gaining importance which helps to reduce dependency on oil, increases energy efficiency of transportation, reduces carbon emissions and noise, and avoids tail pipe emissions. Because of short daily driving distances, high mileage, and intermediate waiting time, fossil-fuelled taxi vehicles are ideal candidates for being replaced by battery electric vehicles (BEVs). Moreover, taxi BEVs would increase visibility of electric mobility and therefore encourage others to purchase an electric vehicle. Prior to replacing conventional taxis with BEVs, a suitable charging infrastructure has to be established. This infrastructure consists of a sufficiently dense network of charging stations taking into account the lower driving ranges of BEVs.In this case study we propose a decision support system for placing charging stations in order to satisfy the charging demand of electric taxi vehicles. Operational taxi data from about 800 vehicles is used to identify and estimate the charging demand for electric taxis based on frequent origins and destinations of trips. Next, a variant of the maximal covering location problem is formulated and solved to satisfy as much charging demand as possible with a limited number of charging stations. Already existing fast charging locations are considered in the optimization problem. In this work, we focus on finding regions in which charging stations should be placed rather than exact locations. The exact location within an area is identified in a post-optimization phase (e.g., by authorities), where environmental conditions are considered, e.g., the capacity of the power network, availability of space, and legal issues.Our approach is implemented in the city of Vienna, Austria, in the course of an applied research project that has been conducted in 2014. Local authorities, power network operators, representatives of taxi driver guilds as well as a radio taxi provider participated in the project and identified exact locations for charging stations based on our decision support system.  相似文献   

15.
The paper outlines the basic effects of aging and technological substitution of motor vehicles on their air emissions. The analysis is facilitated with the aid of an existing model that simulates the internal dynamics of vehicle populations and performs emission calculations. The renewal rate of vehicles is modeled and associated uncertainties are demonstrated. The sensitivity of the system to specific age and technological parameters is examined. The impacts of emissions deterioration, implementation of inspection and maintenance programs and introduction of cleaner fuels are studied.  相似文献   

16.
The accelerated diffusion of cleaner vehicles to reduce CO2 emissions in transport can be explicitly integrated in emission trading designs by making use of cross-sectoral energy efficiency investment opportunities that are found in data on CO2 emissions during the production and the use of cars and trucks. We therefore elaborate the introduction of tradable certificates that are allocated or grandfathered to manufacturers that provide vehicles (and other durable goods) that enable their customers to reduce their own CO2 emissions. This certificate is an allowance for each tonne CO2 avoided. Manufacturers can then sell these certificates on the emission market and use the revenues to lower the price of their cleanest vehicles. This mechanism should partially overcome the price difference with less efficient cars. In a simulation, we found that the introduction of the certificate in tradable permit systems can lead to very significant reductions of CO2 emissions. The simulations indicate that CO2 emissions resulting from the car fleet can be reduced by 25 to 38% over a period of 15 years (starting in 1999). For the truck fleet, the reduction potential is more limited but still very interesting.  相似文献   

17.
In this paper we review the dry port concept and its outfalls in terms of optimal design and management of freight distribution. Some optimization challenges arising from the presence of dry ports in intermodal freight transport systems are presented and discussed. Then we consider the tactical planning problem of defining the optimal routes and schedules for the fleet of vehicles providing transportation services between the terminals of a dry-port-based intermodal system. An original service network design model based on a mixed integer programming mathematical formulation is proposed to solve the considered problem. An experimental framework built upon realistic instances inspired by regional cases is described and the computational results of the model are presented and discussed.  相似文献   

18.
This article highlights eco-driving as an available policy option to reduce climate altering GHG emissions. Recognizing the need to reduce the environmental impact of its fleet operations, the City of Calgary is a leader in developing programs and policies that aim to reduce GHG emissions and associated pollutants resulting from the use of fossil fuels. Among local action taken against climate change, the City sought to quantify CO2 emissions reductions from their municipal fleet as a result of eco-driver training, with a specific focus on engine idling. Fifteen drivers from the Development & Building Approvals Business Unit had in-vehicle monitoring technology (CarChips®) installed into their vehicles as part of a three-phase research process. The results show that gasoline and hybrid vehicles decreased average idling between 4% and 10% per vehicle per day, leading to an average emissions decrease of 1.7 kg of CO2 per vehicle per day.  相似文献   

19.
This study attempts to present an urban road transportation strategy focusing on the mitigation of both GHGs emission and public health damage, taking Xiamen City as a case study. We developed a Public Health and GHGs Emission model to estimate the impacts of direct energy-consumption-related GHGs emissions and public health damage in Xiamen’s road transportation strategies from 2008 to 2025, considering the environmental benefits and economic costs. Two scenarios were designed to describe future transportation strategies for Xiamen City, and mitigation potentials for both GHGs emission and public health costs were estimated from 2008 to 2025 under a series of options. The results show that enacting controls on private vehicles would be most effective to GHGs mitigation, while enacting controls on government and rental vehicles would contribute the most to NO2 and PM2.5 reductions. Compared with the Business as Usual scenario, the Integrated scenario would achieve about a 68% energy consumption reduction and save 0.23 billion yuan (95% CI: 0.16, 0.32) in health costs in 2025. It is clear that integrated and advisable strategies need to mitigate the adverse impacts of urban road vehicles on GHGs emissions and public health and economic costs, particularly in regions of rapid urbanization.  相似文献   

20.
The 1990 Clean Air Act Amendments (CAAA) and the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) have defined a set of transportation control measures to counter the increase in the vehicle emissions and energy consumption due to increased travel. The value of these TCM strategies is unknown as there is limited data available to measure the travel effects of individual TCM strategies and the models are inadequate in forecasting changes in travel behavior resulting from these strategies. The work described in this paper begins to provide an operational methodology to overcome these difficulties so that the impacts of the policy mandates of both CAAA and ISTEA can be assessed. Although the framework, as currently developed, falls well short of actually forecasting changes in traveler behavior relative to policy options designed to encourage emissions reduction, the approach can be useful in estimating upper bounds of certain policy alternatives in reducing vehicle emissions. Subject to this important limitation, the potential of transportation policy options to alleviate vehicle emissions is examined in a comprehensive activity-based approach. Conclusions are drawn relative to the potential emissions savings that can be expected from efficient trip chaining behavior, ridesharing among household members, as well as from technological advances in vehicle emissions control devices represented by replacing all of the vehicles in the fleet by vehicles conforming to present-day emissions technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号