首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于风-车-桥耦合系统振动理论,建立风-车-桥耦合系统的运动方程。运用自编风-车-桥耦合程序,计算不同路面、不同车速和不同风速下车轮竖向接触力,分析路面等级、车速和风速对车辆行驶安全性的影响;以车轮折算压力为标准,采用概率统计方法建立车辆侧滑和侧倾事故模型,提高事故分析的可靠性,并结合工程实例,对风环境下车辆的动力响应进行了分析。计算了车辆行驶在不同车速下侧倾临界风速、不同风速下侧倾临界车速和4种不同路面状况下侧滑临界风速,为车辆在桥上行驶安全风速和车速确定提供依据。  相似文献   

2.
为了研究大跨桥梁在风、车及地震联合作用下的动力响应,在已有风-车-桥耦合振动分析程序的基础上,利用大质量法模拟桥梁受到的地震作用,建立了地震-风-车-桥耦合振动分析的数值模拟平台,通过质量-弹簧-阻尼系统模拟车辆模型,利用有限元方法建立桥梁模型,采用谱表示法模拟路面粗糙度、风场和地震动,通过分离迭代方法求解地震-风-车-桥耦合振动系统的动力响应。以主跨1 088 m的苏通大桥为例,基于建立的地震-风-车-桥耦合振动分析平台,计算分析了日常风荷载与地震联合作用下桥梁和车辆的动力响应;并进一步探究了地震动完全空间变异性对地震-风-车-桥耦合系统车桥动力响应的影响。结果表明:处于日常运营阶段的大跨桥梁结构(仅承受风和车辆荷载)受到突发地震时,桥梁和桥上行驶车辆的动力响应将急剧增加,地震动对车-桥系统动力响应起控制作用;与地震-车-桥系统中的桥梁响应相比,考虑风荷载会增加主梁跨中的横向振动,但对主梁跨中的竖向振动会有抑制作用;与只考虑地震荷载作用的车桥响应相比,同时考虑地震和平均风速为20 m·s-1的脉动风荷载联合作用下的主梁跨中横向位移极值最大增大约40%。虽然地震动是车桥耦合振动的控制荷载,但是日常风荷载对大跨桥梁车桥振动的影响不可忽略。地震发生后,车辆的横向加速度极值超过0.5g,竖向加速度极值接近1g,可能引起车辆的侧滑或翻滚,车辆的运行行为有待进一步研究。与仅考虑地震动行波效应相比,考虑地震动完全空间变异性的车桥振动响应不仅在波形上产生很大差异,而且响应极值也发生了较大的变化,可见在地震动输入时需要考虑完全空间变异性来保证得到的车桥响应结果偏于安全。  相似文献   

3.
为研究车-桥耦合动力作用下的车辆与桥梁力学行为,基于ABAQUS有限元软件建立二自由度四分之一车辆模型和简支桥模型。车辆模型考虑橡胶轮胎超弹性,桥面铺装层考虑沥青混合料黏弹性。基于轮胎与桥面铺装层接触关系,建立车-桥耦合动力模型,采用中心差分法和有限元理论求解车辆和桥梁时域响应。结果表明:通过与现场桥面铺装层上面层跨中竖向应力测量值比较,验证所建车-桥耦合动力模型具有一定可行性;未添加路面不平度上面层跨中最大竖向压应力、最大横向压应力、最大纵向压应力分别为0.608,0.283,0.338 MPa,添加路面不平度上面层跨中最大竖向压应力、最大横向压应力、最大纵向压应力分别为1.327,0.652,0.706 MPa,分别增大118.257%,130.389%,108.876%;未添加路面不平度最小和最大车辆悬架弹力分别为36.178,59.322 kN,变化幅度为63.973%,添加路面不平度最小和最大悬架弹力分别为33.738,60.859 kN,变化幅度为80.387%;未添加路面不平度纵梁跨中最大竖向压应力、最大横向拉应力、最大纵向压应力分别为0.282,0.193,0.159 MPa,添加路面不平度分别为0.449,0.418,0.348 MPa,分别增加59.220%,116.580%,118.868%。添加路面不平度,车-桥耦合动力效应增强,车辆与桥梁各项响应均增大。  相似文献   

4.
采用谐波合成法和桥面粗糙度理论分析风-车-桥系统的随机性,分析侧向风对桥面振动的影响机理,提出考虑风速风向联合分布影响,并基于动力可靠度理论对风-车-桥系统进行行车安全可靠度分析。通过工程实例计算表明,在不同风向分布中考虑联合分布的动力可靠度值更可靠,在进行安全分析评价的时候更安全,是最符合实际情况的评价指标。  相似文献   

5.
基于三维车辆模型和车-桥耦合分析程序,利用接触面间的位移协调条件与力相互作用建立车-桥耦合振动方程;以某大跨度连续刚构桥为工程背景建立桥梁有限元模型,以桥面不平整作为系统的自激激励源,分别采用有限元软件和MATLAB车-桥耦合振动分析程序,在实测桥面数据下对整体模型在车辆作用下的动力响应和冲击系数进行分析,并对国内规范和国外几种常用规范计算的冲击系数进行对比分析。  相似文献   

6.
为分析桥面不平顺状态下含表面裂纹时桥-车耦合振动,利用1/4车辆模型,基于桥面不平顺产生的随机激励,运用Hamilton原理建立桥面不平顺状态下含裂纹桥-车耦合系统动力方程,应用Runge-kutta法对方程进行求解,分析不同等级桥面不平整度下,裂纹深度、车速、桥车质量比等参数对桥梁结构位移的影响。结果表明,随着裂纹深度的增加,梁体跨中位移峰值增大,且考虑桥面不平顺状况时梁体跨中位移响应更复杂。  相似文献   

7.
为将梁格法车-桥耦合分析系统提升至同时考虑结构整体响应及局部应力分析的精细化实体车-桥耦合分析系统,首先,基于最小势能原理推导八节点六面体实体有限单元列式,采用等参插值确定单元的协调位移,引入Wilson非协调位移模式,消除一阶单元在弯曲变形分析中的剪切自锁,提高单元的分析精度和计算效率;采用静/动力分析算例对所构造非协调八节点六面体单元(ICH8)的准确性进行验证;其次,基于车轮与桥面接触实体单元间的位移协调和力的平衡关系,采用非线性分离迭代法建立实体车-桥耦合分析系统,编制自主研发的精细化分析模块;再次,融合Monte-Carlo灵敏度分析与遗传算法构建桥梁实体有限元模型修正方法,并借助现场静载测试结果对目标桥梁实体有限元模型进行修正;最后,联合修正的桥梁实体有限元模型与跑车工况测试结果验证所建立实体车-桥耦合分析系统的准确性。结果表明:由所建立的实体车-桥耦合分析系统得到的桥梁动力响应与实测响应吻合良好,从而验证了该分析系统的可靠性。借助所建立的实体车-桥耦合分析系统,不仅可实现时域内桥梁结构的整体内力分析,同时还可实现桥梁结构的局部应力分析,包括局部构件的应力分布和应力集中等,对当前车-桥耦合振动领域分析工具具有一定的改进和提升。  相似文献   

8.
在对不设桥头搭板的路桥过渡段路面进行简化后,建立了三自由度车辆垂向振动系统分析模型,通过模态分析方法求解并计算了车辆上桥和下桥时的人车系统的位移响应和加速度响应;利用所建的车辆模型对经过路桥过渡段时的振动特性进行了评价;并详细分析了行进方向、车速、桥面沉降坡差、车辆载重等参数对差异沉降控制指标的影响.  相似文献   

9.
大跨度桥梁一般较柔且桥面较高,车辆与桥梁间耦合作用明显,桥面风速较大时车辆风荷载也将增大,列车-桥梁系统抗风安全性成为重要课题。为了研究阵风环境下高速列车驶过独塔斜拉桥时的耦合振动特性,利用有限元方法建立多自由度有限元独塔斜拉桥子系统(转为线性弹性体),利用多刚体动力学方法建立CRH3四动四拖八辆编组高速列车子系统,在两子系统基础上,搭建起高速列车-独塔斜拉桥刚-柔耦合大系统。利用线性滤波法并考虑空间竖向和横向相关性生成了空间脉动阵风,其作为外部激励输入车-桥系统中,选用Park数值积分方法进行了求解。在此基础上,通过时域/频域方法分析阵风激扰对车-桥系统的影响,并继续研究风攻角、行车速度对车辆安全运行的影响,并得到相应条件下的车速限值。研究结果表明:利用有限元与多体动力学方法结合的刚-柔耦合系统同时阵风作为激励输入,可以有效模拟风-车-桥系统;空间脉动阵风使得车-桥系统各动力学响应明显加剧,并激起车辆及桥梁的低频振动;车速提高使桥面低频及车辆中低频振动被激起,振动向更高频率移动;风攻角在60°~90°时影响最大;在预设条件下,车速为230 km·h-1时,列车轮重减载率已超过安全限值(0.8),此时列车在桥梁上行驶安全已无法得到保证。  相似文献   

10.
提出了在路面随机谱激励下,将多个参数变量进行分离,两两组合,并按不同基准对车-桥振动的动力放大效应进行归类分析的方法。建立了考虑路面随机激励的车-桥振动微分方程组,计算了系统中的动力放大系数并赋予其点、线、面的几何意义;定义了路面不平顺谱放大系数,并以响应类型、车速、路面不平顺等级为标准进行了计算、归类分析。结果表明:车-桥系统的动力放大效应总体上随车速及路面不平顺等级的增大而增大;在不同路面不平顺等级下,桥的动力放大系数小于车的动力放大系数;同时,路面不平顺等级显著影响车与桥的动力放大系数;工程上应重视对路面的维护,以减小对桥梁结构的冲击,降低车辆行驶的振动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号