首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
张斌  朱汉华 《船舶工程》2020,42(11):64-70
针对安装误差导致的轴颈倾斜角、主轴转速、艉轴工作环境温度等因素对船舶艉轴承润滑性能影响的问题,以某散货船为研究对象,基于Reynolds边界条件,运用有限差分法对Reynolds方程进行求解,通过数值分析软件MATLAB进行编程,获得不同工况下艉轴承的润滑模型。进而对多种参数影响下的油膜压力和油膜厚度差异进行对比分析。结果表明:考虑轴颈倾斜角的情况下,轴颈倾角逐步增大,油膜压力峰值与轴颈倾角呈现正相关关系,最小油膜厚度减小速度先快后慢;主机在不同工况下,油膜压力峰值与主轴转速呈现负相关关系,最小油膜厚度与主轴转速则呈现出一种近似正比的关系;当艉轴工作环境温度变化时,随着温度的升高,最大油膜压力逐渐增大,最小油膜厚度变化趋势则相反,逐渐向减小的方向发展。  相似文献   

2.
为降低低速重载滑动轴承的摩擦磨损,解决航行期间出现的船舶艉轴承高温现象,文章建立了艉轴与艉轴承之间的流体润滑数学模型,利用转子轴承系统分析软件DLAP (dynamic lubrication analysis program),求解Reynolds方程和黏温方程。以双侧进油圆瓦轴承为研究对象,得到了进油温度、入口压力对艉轴与艉轴承最大油膜压力、最小油膜厚度、温升、功耗和流量等之间的影响关系。结果表明,进油温度对轴承润滑特性的影响很小,入口压力对最大油膜压力、最小油膜厚度、流量等的影响较大,可适当控制入口压力的大小,为进一步分析不同工况下船舶艉轴承润滑特性提供依据。  相似文献   

3.
船舶推进轴系由于受轴承布置及运行时各种动态因素的影响,轴线会有一定程度的弯曲变形.轴承中轴径的倾斜会导致轴承油膜厚度的变化,从而使轴承压力分布产生变化,当局部压力超过轴承允许比压时,易产生轴承局部区域磨损,因此有必要分析轴径倾斜对径向滑动轴承润滑性能的影响.对实船推进轴系进行分析,利用有限差分法求解Reynolds方程,用FORTRAN及MATLAB编程分别对艉管前轴承、艉管后轴承及中间轴承进行计算分析.结果表明:当轴径倾斜时,油膜局部压力超过允许比压,随着倾斜角度变大,局部最大压力突变,最小油膜厚度减小,其位置也向尾端倾斜,从而使油膜压力和厚度分布等发生了较大的边缘效应.  相似文献   

4.
轴系校中状态好坏直接影响船舶推进系统的正常运行,而影响轴系校中的动态因素很多,其中轴承油膜是一项重要的影响因素.通过数值分析方法解径向轴承雷诺方程,得到索莫菲尔德数及轴心偏位角与轴承宽径比B/D及轴心偏心率ε之间的关系.利用ANSYS及MATLAB计算软件,分析了桨浸水状态对轴系各轴承负荷的影响,得到了轴承偏心率ε及偏位角β与轴转速n的关系,轴承处轴颈垂直方向及水平方向偏心随转速变化的规律,以及油膜对各轴承负荷的影响.  相似文献   

5.
船舶推进轴系校中计算中轴承油膜的影响分析   总被引:2,自引:1,他引:1  
针对船舶推进轴系校中计算问题,提出了校中计算的有限元模型和考虑油膜作用的非线性轴承支承模型。在此基础上,结合具体工程实例通过数值计算确定了尾管轴承支反力的位置,讨论了油膜对轴承反力分布的影响。该方法有利于更准确地确定轴系在运行过程中轴线空间位置,对工程实际具有一定指导意义。  相似文献   

6.
为了解决艉管后轴承损坏问题,根据VLGC轴系设计,首先进行常规轴系合理校中计算,然后建立有限元模型进行轴承与轴系的接触计算;在此基础上,分析轴承接触状态与轴系合理校中数据,得到轴承与轴系的接触状态,提出艉管后轴承的优化设计方案。  相似文献   

7.
径向轴承及推力轴承处边界条件的准确建立是船舶推进轴系校中计算的重点与难点。基于流体动压润滑理论,分析不同运行工况下考虑轴颈倾斜的径向轴承润滑特性,将轴承间隙、油膜厚度、支承基座及船体柔性以等效轴段挠度的形式计入轴系校中过程,并与刚性支承、弹性支承模型计算结果进行对比分析;计算因推力轴段转角、支承基座变形而引起的推力轴承附加力矩,并分析其对轴系校中的影响;建立轴承润滑与轴系校中耦合计算方法。结果表明:由径向轴承间隙、轴颈倾斜而引起的支点位置改变、润滑油膜厚度、推力轴承处附加力矩对轴系校中具有重要影响。  相似文献   

8.
张天勇  朱汉华  范世东 《船舶工程》2010,32(1):29-32,68
将平均流量Reynolds方程与G-T接触理论相结合,建立了船舶在动态工况下综合考虑轴系艉轴承的载荷、转速变化及表面粗糙度影响的混合润滑与接触问题的数学模型.通过编写相应的数值求解程序,分析了启动和变工况运行两个动态过程对艉轴承的润滑油膜压力、油膜厚度及表面粗糙峰承载量等润滑参数的影响.该方法能够准确而快捷地对各种船舶艉轴承的润滑性能做出预测和评估,从而对艉轴承的设计与失效分析提供一种有效的途径.  相似文献   

9.
姜涛  周建辉  吴炜 《船海工程》2014,(2):157-161
考虑到进行艉轴承水膜厚度与压力计算时须考虑内衬材料的弹性变形,以提高艉轴承弹性流体动压计算精度,应用有限元法方法求得艉轴承内衬的弹性变形,结合雷诺方程求得计入弹性变形后的艉轴承水膜厚度与压力分布,并与流体动压润滑进行对比。结果表明,水润滑艉轴承弹流润滑计算得到的水膜压力减小,水膜厚度增大;艉轴是否倾斜对弹流动压润滑计算结果有明显影响。在相同工况下,随着艉轴倾斜率的增大,弹流润滑最大水膜压力上升,最小水膜厚度减小。  相似文献   

10.
螺旋桨推进轴系的纵向振动是船体艉部振动噪音的重要来源。推力轴承主要承受轴向推力,其动态性能直接影响船体艉部耦合振动。针对推进轴系纵向振动与船体艉部耦合振动,应用雷诺方程计算推力块4种工况下的油膜动力特性,建立轴系-基座-船体耦合系统有限元模型,运用有限元功率流方法分析推力轴承对系统振动影响,以此为基础探讨了流经传递路径的功率流与系统水下辐射噪声之间的关联。研究表明,推力轴承的动态特性会对流入各轴承的功率流产生影响,导致系统耦合振动发生相应的变化。  相似文献   

11.
中、小型船舶吃水较浅,其螺旋桨转速快、直径小、重量轻,一旦艉管前后轴承跨距较大,艉管后轴承支点位置就将超出标准给定的范围。本文基于有限元法,将轴系简化为Timoshenko梁单元建立有限元模型,考虑船舶轴系实际安装间隙和基于赫兹接触理论计算的载荷-刚度曲线,使用不同支撑位置和多种支撑模型对艉轴大跨距轴系进行校中计算对比。研究发现,对于艉轴大跨距的轴系,CB/Z 338-2005中对艉管后轴承支点位置的取值已不适合。如果轴承支点选取准确,则单点刚性支承、单点弹性支承、多点非线性弹性支承的轴承负荷计算结果相近。  相似文献   

12.
轴承油膜是影响轴系校中的动态因素之一。在油膜刚度的计算过程中,较多学者采用船级社推荐值,或将轴承考虑为刚性,利用差分法或有限元法对其进行求解。文章对轴承弹性变形与油膜压力进行耦合分析,获得最优小扰动量,得到更符合实际情况的油膜刚度,利用vb.net编写有限元轴系校中软件并对某油船轴系进行校中计算,分析了轴承油膜对轴系校中的影响程度,可为船舶轴系校中计算及检验提供参考。  相似文献   

13.
考虑轴颈倾斜的径向滑动轴承动态特性研究   总被引:1,自引:0,他引:1  
由于螺旋桨的悬臂作用,船舶尾轴径向滑动轴承工作时轴颈在轴承孔中往往处于倾斜状态,这样尾轴承特别是后尾轴承会造成严重的磨损,因此有必要分析轴颈倾斜对径向滑动轴承润滑性能的影响,找出压力分布规律,为船舶推进轴系实现合理校中提供一定的理论依据。文中给出了考虑轴颈倾斜的油膜厚度计算公式,通过对Reynolds方程进行求解,结果表明,随着倾斜角的增大,最大油膜压力逐渐向尾部倾斜,油膜压力分布出现尖角状态,油膜合力也逐渐增大。  相似文献   

14.
杨红军  李俊  刘镇剑 《船舶力学》2019,23(2):218-226
针对大型商船推进轴系中尾管后轴承,且尾轴在螺旋桨重量作用下存在弯曲变形,导致尾管后轴承后端存在边缘载荷的特点,研究了轴系校中计算中尾管后轴承Hertz接触模型的非线性建模方法。以第二代四十万吨矿砂船轴系为对象,采用平面梁单元,建立轴系校中有限元模型;同时将尾管后轴承分成多个轴承分段,使用Hertz接触模型模拟各个轴承段与轴的接触形态,并用迭代法求解了具有非线性边界条件的梁单元有限元模型。对根据尾管后轴承单支点模型的计算结果确定的几组尾管后轴承SLOPE值进行了计算对比。研究发现,基于Hertz弹性接触的尾管后轴承多点支承的非线性模型,可以得到尾管后轴承的最大接触压力、各个轴承段的支反力等分布情况,可以更好地优化尾管后轴承的SLOPE设置,要优于传统的单支点固定约束模型。  相似文献   

15.
轴系修理是舰船坞修的主要工程之一,亦是缩短修船周期,提高在航率所要重视的一个问题。轴系修理大体上有以下几个大项目:轴系中心线的检查、调正;艉轴的校调;艉轴铜套的修换;艉轴承的修换;推进器的修换等。其中轴承中心线的合理找中,艉轴承间隙的合理取舍,艉轴铜套厚度的取值均为修理中的关键。在此仅对艉轴铜套厚度的修换值做一下探讨。  相似文献   

16.
船舶轴系油膜计算与轴承反力分析   总被引:5,自引:0,他引:5  
耿厚才  饶柱石  崔升 《船舶力学》2004,8(5):120-124
建立了滑动轴承油膜的有限元模型,分析了油膜对船舶轴系轴承反力的影响.计算结果表明,油膜之间的相互作用使轴系的轴承反力发生变化,对尾轴的轴承反力产生不良影响,而主机轴的各支承力会发生不同的变化.  相似文献   

17.
考虑艇体变形影响的轴系合理校中   总被引:1,自引:0,他引:1  
为提高潜器推进轴系校中计算的准确度,使计算结果与实际情况更为接近,必须考虑艇体变形对轴承变位的影响,并将其作为轴系校中计算的初始边界条件。通过三维有限元计算,分析模型潜器的整艇湿表面结构在重力和水压作用下的变形情况,由此获得艇体艉部的结构变形数据。提出“共线程度”的概念和计算方法,将艇体结构变形数据转化为轴系各轴承相对变位数据,作为潜器推进轴系合理校中计算轴承的初始变位。利用轴系合理校中计算程序,在考虑艇体变形和轴承刚度的条件下,对模型潜器的轴系布置进行优化计算。结果表明:安装时,1#、2#、3#轴承位于理论中心线上,4#轴承变位为理论中心线向上0.4 mm能够获得合理的轴系校中状态。  相似文献   

18.
船舶轴系的动态校中计算   总被引:3,自引:0,他引:3  
耿厚才 《中国造船》2006,47(3):51-56
利用有限元建模与数值计算相结合的方法,进行了船舶轴系的动态校中计算。在计算过程中,针对某一具体船型,考虑了螺旋桨动态变化的作用力、轴承油膜的动力特性以及支承与船体的刚度。实船测试的结果表明所建立的动态校中模型是可信的。利用已建立的动态校中模型,计算了多种工况的轴承动反力,讨论了不同转速、不同工况下轴承动反力的变化趋势,得到了一些有价值的结论,给生产实际提供了理论指导。  相似文献   

19.
推进轴系在船舶动力装置中起着重要的作用,船舶艉管轴承在船舶非正常运行过程中,往往出现高温报警。基于径向滑动轴承的水动力润滑机理,建立了某大型船舶艉管轴承油膜润滑的数学模型,采用超松弛迭代法计算流体动力润滑二维Reynolds方程,分析了船舶艉管轴承间隙比和沟漕位置对轴承承载力的影响。通过对艉管轴承的优化设计,改变了艉管轴承的沟槽位置及轴承间隙,提高了轴承的承载力,该船在再次试航和实际营运中艉管轴承未再出现高温报警。  相似文献   

20.
张立冬 《中国水运》2014,(9):164-165
分析某船舶在低速航行时艉轴的异常噪声,通过故障排除和理论分析的方法研究了轴系异常噪声的根源和产生机理:船舶轴系受多个载荷作用,导致船体、螺旋桨轴和艉轴承产生变形,在艉轴承中心线与螺旋桨轴颈中心线之间形成一个变形角,船舶在低速航行时,轴系变形产生的回旋运动对艉轴承润滑性能的影响以及二者之间的相互耦合是轴系产生振动并产生噪声的根本原因。同时提出船舶在设计、生产及使用过程时避免轴系声响的控制方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号