首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development and deployment of steering based collision avoidance systems are made difficult due to the complexity of dealing with oncoming vehicles during the evasive manoeuvre. A method to mitigate the collision risk with oncoming vehicles during such manoeuvres is presented in this work. A point mass analysis of such a scenario is first done to determine the importance of speed for mitigating the collision risk with the oncoming vehicle. A characteristic parameter was identified, which correlates well with the need to increase or decrease speed, in order to reduce the collision risk. This finding was then verified in experiments using a Volvo XC90 test vehicle. A closed-loop longitudinal acceleration controller for collision mitigation with oncoming vehicles is then presented. The longitudinal control is combined with yaw stability control using control allocation to form an integrated controller. Simulations in CarMaker using a validated XC90 vehicle model and the proposed controller showed consistent reductions in the collision risk with the oncoming vehicle.  相似文献   

2.
针对智能汽车在无信号交叉口对横穿行人的避撞问题,研究了主动转向避撞控制策略。基于多层模型预测控制方法,采用分层控制策略设计局部规划层控制器与全局跟踪层控制器,在此基础上根据交叉口处汽车与行人的轨迹特征计算人车碰撞剩余时间,改进传统人工势场法构造避撞函数,规划出既能规避交叉口内存在碰撞风险的行人又能使偏差最小的局部避撞路径,并使智能汽车在满足多项动力学约束时准确跟踪参考路径,通过搭建CarSim/Simulink联合仿真平台,结合广东省2006—2018年交通事故数据库选取对交叉口人车碰撞有显著影响的因素,设计仿真场景进行仿真分析。结果表明:智能汽车能在多个初始点完成对参考路径的跟踪,控制器对不同速度和附着条件有较高的鲁棒性,高速低附着场景中,智能汽车横向加速度小于0.4 g、质心侧偏角小于2°、前轮侧偏角小于2.5°,各约束量满足舒适性和平稳性条件;4个典型交叉口场景中,智能汽车以不同速度直行或转弯通过交叉口,均能识别横穿行人中存在碰撞风险的行人实现主动转向避撞。   相似文献   

3.
为了提高智能汽车的主动安全性,提出3种不同的自动紧急转向避撞跟踪控制方法。首先建立汽车避撞简化模型,对制动、转向及两者相结合的3种不同避撞方式进行对比分析。其次,为深入研究汽车避撞过程中的实际响应,建立包含转向、制动及悬架3个子系统耦合特性的底盘18自由度统一动力学模型,并进行相关试验验证。随后构建智能汽车自动紧急转向避撞控制框架,对五次多项式参考路径和七次多项式参考路径的横摆角速度和横摆角加速度进行对比分析。接着以线性2自由度转向动力学模型为参考对象,对最优控制四轮转向、最优控制前轮转向、前馈与反馈控制相结合的前轮转向3种不同的跟踪控制系统分别进行设计。最后,以汽车底盘18自由度统一动力学模型为研究对象,对上述3种避撞控制系统进行仿真试验对比分析。研究结果表明:与制动避撞相比而言,转向避撞所需的纵向距离有较大降低,随着车速的增加和路面附着系数的越低,效果越明显;七次多项式参考路径比五次多项式参考路径的避撞过渡过程更为平缓,当实际车速与控制器所用车速不一致时,前者避撞性能表现更优;最优四轮转向控制系统在高、低2种不同附着路面都具有较好的避撞效果,最优前轮转向控制系统次之,而前馈与反馈相结合的前轮转向控制系统在低附着路面上则表现出严重的失稳。  相似文献   

4.
张一鸣  周兵  吴晓建  崔庆佳  柴天 《汽车工程》2020,42(5):574-580,587
针对现有运动规划算法大多只考虑障碍车当前状态,本文中提出一种基于前车运动轨迹预测的高速车辆运动规划算法。首先,融合考虑驾驶意图与基于车辆运动模型的方法对前车轨迹进行预测;然后,采用贝塞尔曲线(Bezier)规划主车运动轨迹,结合避撞过程中与前车碰撞风险概率,高速避撞车辆速度变化特点以及车辆运动稳定性等因素建立目标函数,并考虑车辆动力学与运动学约束,使用序列二次规划(SQP)方法对Bezier曲线的控制点和主车运动目标点位置进行优化求解,得到最优避撞运动轨迹;最后,以前车直行和换道两种工况为例,对主车的避撞运动轨迹进行规划,分析不同工况下主车避撞过程中的运动状态变化以及与前车碰撞风险概率变化。结果表明,所提出的运动规划算法能够保证车辆的避撞安全性与运动稳定性。  相似文献   

5.
由于视线障碍物造成的“鬼探头”事故已经成为当前城市道路交通事故的主要类型之一。针对汽车碰撞视线遮挡条件下横穿的弱势道路使用者(VRU)的场景, 设计了1种基于碰撞时间比和安全制动距离的避撞策略, 建立车辆与VRU的交通状态数学模型, 分析“鬼探头”场景下的制动避撞临界距离。结合临界距离和车辆与VRU的碰撞时间比, 将可以避免碰撞的场景分为3种工况, 分别采用不同的制动减速度, 建立自动紧急制动避撞策略。通过Euro NCAP CPNC测试场景对该策略与传统TTC制动算法进行比较分析。结果表明, 在Euro NCAP CPNC测试场景中, 自车利用该避撞策略在理想情况下能够在更高的车速情况下完成避撞; 在不能避免碰撞的高速行驶工况中较传统TTC算法能够更加有效降低碰撞速度, 同时降低事故重伤风险和死亡风险, 提高车辆的安全性。   相似文献   

6.
In this paper, we present a hierarchical distributed coordination strategy for connected and automated vehicles (CAVs) that are travelling through multiple unsignalized intersections. The control strategy focuses on the improvement of vehicle fuel efficiency and system mobility. In presence of wireless communication among the involved CAVs and the intersection controllers, our coordination strategy focuses on leading the CAVs travel through a road network without conventional traffic light control and ensuring collision avoidance at the intersection areas. We propose a three-layered coordination strategy in this paper. First, we evaluate the road desired average velocity considering both upstream and downstream traffic to speed up the traffic density balance. Second, the intersection controllers optimally assign reference velocity to each vehicle based on the minimization of velocity deviation from its current velocity and collision avoidance at the intersections. Finally, fast model predictive control (F-MPC) is applied for each vehicle to track their reference velocity in a computationally efficient manner. Two simulation scenarios with different difficulty levels have been implemented on a two-interconnected intersection network. Simulation results indicate the feasibility and scalability of the proposed method, as well as vehicle fuel efficiency and system mobility improvement.  相似文献   

7.
ABSTRACT

Collision avoidance and stabilisation are two of the most crucial concerns when an autonomous vehicle finds itself in emergency situations, which usually occur in a short time horizon and require large actuator inputs, together with highly nonlinear tyre cornering response. In order to avoid collision while stabilising autonomous vehicle under dynamic driving situations at handling limits, this paper proposes a novel emergency steering control strategy based on hierarchical control architecture consisting of decision-making layer and motion control layer. In decision-making layer, a dynamic threat assessment model continuously evaluates the risk associated with collision and destabilisation, and a path planner based on kinematics and dynamics of vehicle system determines a collision-free path when it suddenly encounters emergency scenarios. In motion control layer, a lateral motion controller considering nonlinearity of tyre cornering response and unknown external disturbance is designed using tyre lateral force estimation-based backstepping sliding-mode control to track a collision-free path, and to ensure the robustness and stability of the closed-loop system. Both simulation and experiment results show that the proposed control scheme can effectively perform an emergency collision avoidance manoeuvre while maintaining the stability of autonomous vehicle in different running conditions.  相似文献   

8.
ABSTRACT

Collision avoidance is a crucial function for all ground vehicles, and using integrated chassis systems to support the driver presents a growing opportunity in active safety. With actuators such as in-wheel electric motors, active front steer and individual wheel brake control, there is an opportunity to develop integrated chassis systems that fully support the driver in safety critical situations. Here we consider the scenario of an impending frontal collision with a stationary or slower moving vehicle in the same driving lane. Traditionally, researchers have approached the required collision avoidance manoeuver as a hierarchical scheme, which separates the decision-making, path planning and path tracking. In this context, a key decision is whether to perform straight-line braking, or steer to change lanes, or indeed perform combined braking and steering. This paper approaches the collision avoidance directly from the perspective of constrained dynamic optimisation, using a single optimisation procedure to cover these aspects within a single online optimisation scheme of model predictive control (MPC). While the new approach is demonstrated in the context of a fully autonomous safety system, it is expected that the same approach can incorporate driver inputs as additional constraints, yielding a flexible and coherent driver assistance system.  相似文献   

9.
ABSTRACT

This paper considers the problem of collision avoidance for road vehicles, operating at the limits of friction. A two-level modelling and control methodology is proposed, with the upper level using a friction-limited particle model for motion planning, and the lower level using a nonlinear 3DOF model for optimal control allocation. Motion planning adopts a two-phase approach: the first phase is to avoid the obstacle, the second is to recover lane keeping with minimal additional lateral deviation. This methodology differs from the more standard approach of path-planning/path-following, as there is no explicit path reference used; the control reference is a target acceleration vector which simultaneously induces changes in direction and speed. The lower level control distributes vehicle targets to the brake and steer actuators via a new and efficient method, the Modified Hamiltonian Algorithm (MHA). MHA balances CG acceleration targets with yaw moment tracking to preserve lateral stability. A nonlinear 7DOF two-track vehicle model confirms the overall validity of this novel methodology for collision avoidance.  相似文献   

10.
为解决城市低速条件下智能汽车在避障过程中的路径规划问题,提出面向动态避障的智能汽车滚动时域路径规划方法。首先,划分车道可行区域,利用3次拉格朗日插值法拟合车道边界,并根据"车-路"的相对位置关系将车道区域进一步划分为车道间区域与车道内区域两部分。其次,以区域虚拟力场进行动态交通场景模拟,包括在障碍车周身沿车道方向的虚拟矩形区域斥力场,行驶目标位置的虚拟引力场和车道保持虚拟区域引力场3个部分,然后结合划分的车道区域确定各虚拟力场的作用区域。再次,建立主车动力学与运动学模型,障碍车运动学预测模型,把主车与障碍车无碰撞,主车行驶在车道内区域,趋向目标位置以及保证车辆稳定性作为优化目标,综合车辆模型的控制输入、状态变量等动力学约束条件,构建多目标的滚动时域控制器用于车辆避障路径规划,求解获得前轮转角作为控制量。最后,利用MATLAB和veDYNA软件对提出的路径规划控制系统分别在静态障碍和动态障碍工况下进行联合仿真。研究结果表明:该方法能够很好地解决躲避静态障碍和低速动态障碍车的问题,控制车辆驶向目标位置,并且在避障过程中满足车辆的动力学约束,同时又不会与道路边界发生碰撞,保证了车辆的安全性和稳定性。  相似文献   

11.
多相位信号交叉口微观仿真模型及控制系统研究   总被引:1,自引:0,他引:1  
通过对信号交叉口车辆到达、排队、起动、减速、跟驰、避让等各种交通流微观运行特性的分析,建立了交叉口描述、车辆发生、车道选择、车辆运行等模型,提出了一种交叉口多相位信号控制方案仿真系统。该系统操作方便,界面形象丰富,扩展性强,有效地反映了交叉口交通流的随机性和复杂性,能用于交叉口仿真和优化控制。  相似文献   

12.
轮式装载机在工作区域行驶时,避障过程频繁,以往的避障轨迹规划未考虑整车转向半径约束和车速变化,也较少考虑整车在动力学模型条件下的轨迹跟踪性能。针对上述情况,以自动驾驶轮式装载机为对象,基于最优快速随机扩展树算法(RRT*),考虑车身膨胀圆个数,生成全局最优避障路径,以整车最小稳定转向半径为约束,利用CC-Steer算法对避障路径进行平滑处理,采用路径-速度分解算法规划满足整车在加速、匀速和减速状态下的避障行驶轨迹。基于整车动力学模型,考虑行驶过程中的横向位置偏差和航向角偏差,并将整车动力传动系统视为1阶惯性环节,构建装载机动力学状态空间方程。以加速度和铰接角为控制输入,以车速、横向位置偏差和航向角偏差为控制输出,建立整车动力学预测模型,以加速度、铰接角和车速为约束条件,将目标函数转换为二次规划问题,建立满足装载机在工作区域避障的模型预测轨迹跟踪控制系统。以规划的非匀速行驶避障轨迹为目标,利用构建的模型预测轨迹跟踪系统,进行自动驾驶轮式装载机的轨迹跟踪仿真。研究结果表明:所提方法能够很好地控制自动驾驶轮式装载机从初始位姿驶向目标位姿,实现整车在工作区域的避障过程,且在避障过程中满足整车的约束要求,保证整车在轨迹跟踪过程中的安全稳定性能。  相似文献   

13.
基于模型匹配方法的汽车主动避撞下位控制系统   总被引:4,自引:3,他引:4  
侯德藻  高锋  李克强  连小珉  王跃建 《汽车工程》2003,25(4):399-402,342
针对汽车主动避撞系统下位控制的鲁棒性要求,应用模型匹配控制理论,设计了汽车主动避撞下位系统的控材器;并解决了下位控制系统鲁棒稳定性和鲁棒跟随性难以得到兼顾的问题;通过实车试验结果对此控制器性能进行了验证;获得了较好的效果。  相似文献   

14.
多车协同驾驶是智能车路系统领域的研究热点之一,可有效降低道路交通控制管理的复杂程度,减少环境污染的同时保障道路交通安全。基于多车协同驾驶控制结构,提出了一种无人驾驶车辆换道汇入的驾驶模型及策略,系统分析了多车协同运行状态的稳定条件。在综合分析无人驾驶车辆换道汇入的协作准则、安全性评估后,基于高阶多项式方法,结合车辆运行特性,通过引入乘坐舒适性的指标函数,设计得到无人驾驶车辆换道汇入的有效运动轨迹。通过研究汇入车辆与车队中汇入点前、后各车辆的运动关系,详细分析车辆发生碰撞的类型和影响因素,给出避免碰撞的条件准则,从而确保无人驾驶车辆汇入过程中多车行驶的安全性和稳定性。基于车辆运动学建立车辆位置误差模型,结合系统大范围渐进稳定的条件,选取线速度和角速度作为输入,应用李雅普诺夫稳定性理论和Backstepping非线性控制算法,设计了无人驾驶车辆换道汇入后的路径跟踪控制器。仿真试验和实车试验结果表明:所设计的换道汇入路径是可行、安全的,控制器具有良好的跟踪效果,纵向和横向的距离误差在15 cm以内,方向偏差的相对误差在10%以内。研究结果为智能车路系统中的多车状态变迁与协同驾驶研究提供了参考,可服务于未来道路交通安全设计和评价。  相似文献   

15.
在前方道路突然出现障碍物的危急情况中,车辆采用自动紧急转向来避障,由于情况紧急,车辆在转向过程中仍可能与其他道路参与者发生碰撞事故.当车辆采用自动紧急转向避让道路前方路口突然闯入的车辆时,与对向来车发生斜角碰撞,由此,对该特定场景的转向-碰撞全过程进行一体化仿真,分析乘员在转向阶段因车辆横摆和侧倾运动引起的离位现象以及...  相似文献   

16.
紧急避障工况下的驾驶人操作具有响应快且动作幅值较大的特点,传统预瞄驾驶人模型已不能适应紧急避障工况的需求,故考虑实际避撞场景开发相应的驾驶人模型就显得尤为必要。针对此种状况,基于驾驶模拟器,结合紧急避撞工况实际驾驶人操纵数据,提出了一种融合预瞄与势场栅格法的紧急避撞驾驶人模型。首先针对紧急避撞工况下车辆运动特点,建立车辆横、纵向耦合非线性动力学模型,并给出其状态空间方程描述;其次,离线仿真分析紧急避撞系统特征,并结合线性二次型最优控制,建立最优曲率预瞄+跟踪误差反馈驾驶人模型;再者,基于紧急避撞工况下真实驾驶人经验转向行为数据,开发基于势场栅格法的驾驶人模型,为进一步提高驾驶人模型对避障行驶工况的适应性,将基于势场栅格法的驾驶人模型与最优曲率预瞄+跟踪误差反馈驾驶人模型进行融合,并基于Sigmoid函数实现两者输出的权重分配;最后,针对所提出的融合预瞄与势场栅格法的驾驶人模型,开展基于避撞台架的驾驶人在环仿真试验以及实车试验。研究结果表明:在紧急避撞工况下,对比最优曲率预瞄+跟踪误差反馈驾驶人模型,融合预瞄与势场栅格法的驾驶人模型输出的转向动作与实际驾驶人行为较为接近,可在保证避障安全性的前提下,兼顾避障路径跟踪精度与车辆行驶的稳定性。  相似文献   

17.
为了弥补现有汽车避撞控制策略以及碰撞风险评价指标单一的不足,提出转向和制动协调的主动避撞控制系统。首先规划了五次多项式换道路径,在对其理论分析的基础上得到转向临界避撞距离和与目标车道车辆的安全距离约束。其次,考虑道路附着系数和系统延迟的影响,基于制动过程给出制动临界避撞距离,并以纵向行驶安全系数ξ和碰撞时间倒数T-1TC划分安全行驶区域,利用驾驶人实车跟车数据标定稳态跟随/定速巡航区域的阈值。随后,通过转向/制动临界避撞距离的对比给出2种避撞方式的安全收益范围。最后搭建Simulink/CarSim联合仿真模型,并对其进行不同初始条件下的避撞仿真试验。研究结果表明:转向操作在制动距离不足时仍是有效的;当主车高速近距离接近静止前车时,主车可以顺利采取转向换道动作,而常规ACC系统在2.5 s处的车间相对距离为-0.76 m,事实上已经发生了碰撞;当相邻车道前车与主车纵向间距不满足换道安全距离约束时,避撞控制系统进入紧急制动模式,最大制动减速度达到-0.8gg为重力加速度),实际最小车间距为5.1 m;通过转向和制动的协调动作,充分发挥了车辆的避撞潜力;ξT-1TC指标的融合,可以更好地评估碰撞风险并实现不同控制模式的转换,在保证行车安全的同时可避免过分制动给乘客造成的紧张感。  相似文献   

18.
为实现车辆自主避撞,改善道路交通安全状况,提出一种基于线性路径跟踪控制的换道避撞控制策略。为实时确定制动和换道时机,获取跟车状态下自车和前车车速、加速度、相对距离以及驾驶人制动反应时间计算制动安全距离和换道安全距离,并在此基础上分别引入制动危险系数B和换道危险系数S评估制动与换道风险,使得车辆发生追尾碰撞的危险程度和主动干预阈值更直观。根据车辆期望横向加速度和期望横向位移的变化特性,采用5次多项式法规划符合驾驶人换道避撞特性的避撞路径。为保证换道避撞过程中驾驶人的安全舒适,采用最大横向加速度约束换道避撞轨迹。为实现对换道避撞路径的线性跟踪控制,保证车辆的操纵稳定性和横摆稳定性,基于车辆稳态动力学模型建立前馈控制,结合线性反馈控制消除换道路径的位置和横摆角偏差,修正参考路径实现直车道场景追尾避撞控制。仿真和实车交叉验证试验表明:根据车辆期望横向加速度和期望横向位移建立的符合驾驶人换道避撞特性的五次多项式换道路径与驾驶人实际换道避撞路径基本吻合,结合碰撞时间和车间时距的制动避撞控制策略能够在保证车辆行驶安全舒适性的同时有效避免车辆追尾碰撞,减少交通事故的发生。  相似文献   

19.
An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Hardware-in-Loop experimental results showed that the SMC and full state feedback controller were able to prevent the collision. However, when the discrepancies in the form of parametric variations were included, the SMC provided better results in terms of reduced stopping distance and lower controller effort compared to the full state feedback controller.  相似文献   

20.
A vehicle following control law, based on the model predictive control method, to perform transition manoeuvres (TMs) for a nonlinear adaptive cruise control (ACC) vehicle is presented in this paper. The TM controller ultimately establishes a steady-state following distance behind a preceding vehicle to avoid collision, keeping account of acceleration limits, safe distance, and state constraints. The vehicle dynamics model is for continuous-time domain and captures the real dynamics of the sub-vehicle models for steady-state and transient operations. The ACC vehicle can execute the TM successfully and achieves a steady-state in the presence of complex dynamics within the constraint boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号