首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 578 毫秒
1.
自动驾驶汽车需具备预测周围车辆轨迹的能力,以便做出合理的决策规划,提高行驶安全性和乘坐舒适性。运用深度学习方法,设计了一种基于长短时记忆(LSTM)网络的驾驶意图识别及车辆轨迹预测模型,该模型由意图识别模块和轨迹输出模块组成。意图识别模块负责识别驾驶意图,其利用Softmax函数计算出驾驶意图分别为向左换道、直线行驶、向右换道的概率;轨迹输出模块由编码器-解码器结构和混合密度网络(MDN)层组成,其中的编码器将历史轨迹信息编码为上下文向量,解码器结合上下文向量和已识别的驾驶意图信息预测未来轨迹;引入MDN层的目的是利用概率分布来表示车辆未来位置,而非仅仅预测一条确定的轨迹,以提高预测结果的可靠性和模型的鲁棒性。此外,将被预测车辆及其周围车辆组成的整体视为研究对象,使模型能够理解车-车间的交互式行为,响应交通环境的变化,动态地预测车辆位置。使用基于真实路况信息的NGSIM(Next Generation SIMulation)数据集对模型进行训练、验证与测试。研究结果表明:与传统的基于模型的方法相比,基于LSTM网络的轨迹预测方法在预测长时域轨迹上具有明显的优势,考虑交互式信息的意图识别模块具备更高的预判性和准确率,且基于意图识别的轨迹预测能降低预测轨迹与真实轨迹间的均方根误差,显著提高轨迹预测精度。  相似文献   

2.
针对目前轨迹预测研究中交互建模方法使用的图注意力网络(GAT)为静态注意力,无法有效捕捉复杂道路场景中车辆间交互的问题,提出了一种基于编码器-解码器架构的动态图注意力网络(ED-DGAT)预测高速公路环境中运动车辆的未来轨迹。编码模块使用动态图注意力机制学习场景中车辆间的空间交互,采用状态简化动态图注意力网络建模解码阶段车辆运动的相互依赖,最后使用NGSIM数据集评估所提出的模型,并与长短时记忆(LSTM)、联合社交池化与长短时记忆(S-LSTM)、联合卷积社交池化与长短时记忆(CS-LSTM)算法模型进行对比分析,结果表明,预测轨迹的均方根误差(RMSE)降低了25%,且模型的推理速度为CS-LSTM模型的2.61倍。  相似文献   

3.
为实现周围车辆行驶轨迹的准确预测,运用深度学习方法,设计了一种基于图神经网络与门控循环单元(GRU)的驾驶意图识别及车辆轨迹预测模型。驾驶意图识别模型将车-车间的交互关系构造成时空图,运用图神经网络学习其交互规律,并利用Softmax函数计算出不同驾驶意图的概率;轨迹预测模型采用编码-解码的GRU网络,编码器将车辆历史轨迹信息进行编码并融合识别的驾驶意图信息,再通过解码器实现轨迹预测。最后采用NGSIM数据集对模型进行训练和验证,结果表明:所提出的模型能够更好地识别车辆的驾驶意图,且考虑驾驶意图的车辆轨迹预测模型能够有效提高预测精度。  相似文献   

4.
周亦威  夏莫  朱冰 《汽车工程》2024,(3):396-406
车辆轨迹预测是自动驾驶的关键技术之一,针对以往模型较少考虑城市道路场景中车辆以外多类交通参与者的问题,本研究提出了一种多类交通参与者的多模态车辆轨迹预测模型。该模型使用门控循环单元对历史轨迹信息进行编码,并利用注意力机制将多类交通参与者的特征映射到用图结构表达的驾驶场景中,通过图注意力网络进行环境特征提取,从而使模型能感知环境中的多类交通参与者。此外,模型通过节点轨迹预测与坐标轨迹预测模块输出最终的多模态轨迹预测结果。基于城市道路场景数据集nuScenes的实验结果表明:相较于同类现有模型,所提出的模型算力需求更低、预测更准确,且能适用于人车混合的城市道路驾驶场景。  相似文献   

5.
自动驾驶环境感知系统的重要任务之一是对周围交通目标进行轨迹预测,其输出轨迹可为决策控制和路径规划提供所需目标信息.考虑传统轨迹预测方法一般基于俯视视角而难以满足自动驾驶车载感知的实际需求,提出一种基于长短时记忆(LSTM)网络模块、空间交互模块和时间行为注意力模块相融合的驾驶视角轨迹预测算法.为更好体现交通目标与周围环...  相似文献   

6.
自动驾驶系统需具备响应驾驶人意图且有效执行驾驶人意图的能力,以解决人机协作系统中存在的人机冲突、人机优势融合等问题。提出决策层“以人为主”、执行层“以机为首”的人机协作关系,构建包含驾驶人意图识别模块、基于意图识别的轨迹规划模块与轨迹跟踪控制模块的人机协作一体化控制系统框架,并重点对轨迹规划模块与轨迹跟踪控制模块开展研究。首先,结合双向长短期记忆神经网络(Bi-directional Long Short Term Memory,Bi-LSTM)与注意力机制模型建立换道轨迹规划模型;在改进人工势场算法中引入模型预测控制并建立避险轨迹规划模型。其次,通过开展驾驶模拟器试验建立换道与避险驾驶行为数据集,为拟人化模型训练和模型参数确定提供支撑。然后,综合考虑车辆状态变量、控制输入与输出以及道路结构参数等约束条件,构建基于最优转向前轮输入的线性时变模型预测轨迹跟踪控制器,实现对规划轨迹的精准跟踪。最后,基于驾驶模拟器搭建人机协作系统硬件在环测试平台,对轨迹规划模块与轨迹跟踪控制模块开展硬件在环测试与验证。结果表明:换道与避险规划轨迹光滑且平稳,轨迹跟踪控制过程中,车辆航向角与前轮转角变化平稳;所构建的轨迹规划与轨迹跟踪控制模块在确保安全性前提下可实现不同场景中的车辆运动控制需求。  相似文献   

7.
高镇海  鲍明喜  高菲  唐明弘 《汽车工程》2023,(7):1145-1152+1162
针对单模态轨迹预测无法充分表示未来预测空间以及解决轨迹预测固有的不确定性问题,本文构建了驾驶行为意图识别及交通车辆预期轨迹预测模型。驾驶行为意图识别模块识别被预测车辆车道保持、左换道、右换道、左加速换道和右加速换道的概率;交通车辆预期轨迹预测模块采用编码器-解码器架构,输出被预测车辆未来6 s内可能发生的多种行为和轨迹。通过HighD数据集对模型进行训练、验证与测试。试验结果表明:基于意图识别的预期轨迹预测模型生成的多模态概率分布可提高本车行驶安全性,与其他方法相比显著提高轨迹预测精度,在预测长时域轨迹上具有明显的优势。  相似文献   

8.
在自动驾驶车辆与人工驾驶车辆混行的复杂交通环境中,如何减小驾驶行为截然不同的2类车辆间的复杂相互作用对于车辆行驶安全性、乘坐舒适性和交通通行效率的影响,是当前自动驾驶决策与控制领域亟待解决的关键问题。提出了一个人机混驾环境下人工驾驶车辆与自动驾驶车辆之间的非合作博弈交互框架。首先,综合考虑车辆加速度线性递减的驾驶人纵向操纵特性、差异化配合程度和不同的延迟响应特性,建立人工驾驶车辆的纵向博弈策略。其次,考虑自动驾驶车辆与周围车辆的安全性约束,以及自动驾驶车辆在换道过程中的舒适性和通行效率目标,设计了自动驾驶车辆的纵向博弈策略。然后,基于主从博弈理论对不同混驾环境下人工驾驶车辆与自动驾驶车辆的博弈交互问题进行求解,得到最优的换道间隙和自动驾驶车辆的纵向速度轨迹,并采用模型预测控制方法规划出自动驾驶车辆的横向安全换道轨迹。最后,根据人工驾驶车辆不同配合度和延迟响应时间的差异,设计了多组人机混驾试验工况进行验证。试验结果表明:自动驾驶车辆能够快速准确识别人工驾驶车辆的配合度,选择出最优的目标换道间隙,并与间隙周围的自动驾驶车辆协作来汇入目标间隙。在换道过程中,自动驾驶车辆始终与周围车辆保持安全...  相似文献   

9.
为提高自动驾驶车辆在高速动态复杂交通场景下车辆换道意图识别精度和预判能力,提出了基于融合注意力机制的卷积残差双向长短时记忆(BiLSTM)识别模型。采用一维卷积神经网络提取车辆运动状态特征;将构造的特征向量作为BiLSTM输入信息;通过残差连接,解决多层BiLSTM易出现的优化瓶颈和梯度消失问题;利用注意力机制,调整残差BiLSTM不同时刻输出权重;应用Softmax函数计算驾驶意图概率。采用NGSIM高速公路数据集对模型进行验证,并与其他4种模型进行对比,结果表明:该模型对换道意图整体识别准确率最高,达到97.44%,在换道前2.5 s预测结果准确率达到90%以上,具有更好的识别精度和预判能力。  相似文献   

10.
因交织区的强制换道存在紧迫性, 车辆换道行为在交织区后半段会出现因换道意愿强烈而产生的激进换道行为, 这种微观的换道行为将给交通流带来一定影响; 在人机混驾情形下, 不同类型换道切换控制模型同样可能影响交织区通行能力。在分析人机混驾交通流交织区换道行为特性的基础上, 将换道类型分为保守型换道和激进型换道; 在可接受安全间隙模型的基础上结合自动驾驶车辆间的协同行为, 构建自动驾驶车辆在保守状态下的协同换道模型; 以及在激进型状态下考虑目标车道后车类型影响下, 构建激进型换道模型。通过分析津保立交桥实地调研轨迹数据和NGSIM中US-101交织路段轨迹数据, 分别拟合了保守型、激进型换道模型切换点分布函数; 考虑不同车辆驾驶行为特性及其相互作用, 提出人机混驾条件下换道模型切换控制逻辑决策。以SUMO仿真软件搭建实验平台, 考虑人工驾驶车辆换道模型切换点分布特性, 以优化最大流率、交织区整体车辆运行速度、换道车辆速度等为目标, 确定不同自动驾驶车辆渗透率下自动驾驶车辆的最佳保守型-激进型换道模型切换点。仿真结果显示: 在交织区长度为250 m, 自动驾驶渗透率分别为0.2, 0.5, 0.8时, 自动驾驶换道模型切换点分别在180, 80, 50 m处达到最佳, 即随着自动驾驶渗透率的提高, 换道切换点最佳位置将向交织区入口处逐渐移动, 且在自动驾驶渗透率较低时这种换道切换点的变化较为明显; 在较高渗透率下, 由于协同换道出现频率增高, 自动驾驶强制性换道行为比例降低, 换道模型切换点对交织区通行能力的影响逐渐变小。本项研究对人机混驾条件下高速公路交织区自动驾驶车辆的换道控制提供决策依据   相似文献   

11.
杨敏  王立超  王建 《中国公路学报》2022,35(11):204-217
科学、合理、拟人化的换道控制是实现自动驾驶车辆安全高效行驶的重要保障,已有研究主要考虑相邻车道速度差、换道间隙等要素对车辆换道控制的影响,并未考虑车辆频繁加减速导致乘车体验差而催生换道意图这一重要现象。针对该问题,设计以抗干扰能力为基础的自动驾驶车辆自适应换道调控方法,其调控过程主要包括:采用智能驾驶人模型控制自动驾驶车辆纵向驾驶行为,以减速频次为指标度量自动驾驶车辆的抗干扰能力,并将抗干扰能力引入到自动驾驶车辆换道决策过程中,模拟自动驾驶车辆因频繁加减速导致乘车体验差而产生换道意图的现象,在此基础上,提出车辆换道控制模型。然后,以智慧高速为背景,利用Netlogo构建多种自动驾驶车辆运行场景,测试所构建的自适应换道调控方法。研究结果表明:智能驾驶人模型的选用能够合理体现自动驾驶车辆换道行为对交通流的运行影响;相比于低密度车流(≤30 veh),在中高密度车流情况下(≥40 veh),自动驾驶车辆维持原有车道运行的能力较弱、换道频率较高,且过高[80次·(5 min)-1]或过低[10次·(5 min)-1]的抗干扰能力临界值会导致自动驾驶车辆运行速度降低至10 km·h-1,因此可以根据不同车流密度条件对自动驾驶车辆的最大抗干扰能力进行设置和调整,从而保证自动驾驶车辆的运行效率,这也从侧面证明了所提自适应换道调控方法的科学性与合理性。研究结果对于提高自动驾驶车辆换道控制的合理自主性具有重要意义,该结果进一步完善了自动驾驶车辆换道模型库,能够为自动驾驶自适应换道调控提供理论和技术支撑。  相似文献   

12.
为改善现有的自动驾驶换道轨迹规划模型产生的换道轨迹与真实的换道轨迹存在较大偏差的问题,提出了一种改进LSTM-NN的安全敏感性深度学习模型,该模型可以缓解当前自动驾驶轨迹规划存在的不足,输出轨迹既保证了较高的精度又提高了安全性。CarSim仿真软件模拟了本模型产生轨迹的可跟踪性,结果显示轨迹非常平滑,并且自动驾驶车辆可以高效、安全地完成换道。  相似文献   

13.
Lane-changing events are often related with safety concern and traffic operational efficiency due to complex interactions with neighboring vehicles. In particular, lane changes in stop-and-go traffic conditions are of keen interest because these events lead to higher risk of crash occurrence caused by more frequent and abrupt vehicle acceleration and deceleration. From these perspectives, in-depth understanding of lane changes would be of keen interest in developing in-vehicle driving assistance systems. The purpose of this study is to analyze vehicle interactions using vehicle trajectories and to identify factors affecting lane changes with stop-and-go traffic conditions. This study used vehicle trajectory data obtained from a segment of the US-101 freeway in Southern California, as a part of the Next Generation Simulation (NGSIM) project. Vehicle trajectories were divided into two groups; with stop-and-go and without stop-and-go traffic conditions. Binary logistic regression (BLR), a well-known technique for dealing with the binary choice condition, was adopted to establish lane-changing decision models. Regarding lane changes without stop-and-go traffic conditions, it was identified based on the odd ratio investigation that he subject vehicle driver is more likely to pay attention to the movement of vehicles ahead, regardless of vehicle positions such as current and target lanes. On the other hand, the subject vehicle driver in stop-and-go traffic conditions is more likely to be affected by vehicles traveling on the target lane when deciding lane changes. The two BLR models are adequate for lane-changing decisions in normal and stop-and-go traffic conditions with about 80 % accuracy. A possible reason for this finding is that the subject vehicle driver has a tendency to pay greater attention to avoiding sideswipe or rear-end collision with vehicles on the target lane. These findings are expected to be used for better understanding of driver’s lane changing behavior associated with congested stop-and-go traffic conditions, and give valuable insights in developing algorithms to process sensor data in designing safer lateral maneuvering assistance systems, which include, for example, blind spot detection systems (BSDS) and lane keeping assistance systems (LKAS).  相似文献   

14.
为了研究高速公路小型车的换道行为特性,采用2台无人机同时在200 m的高空对交通流进行拍摄,获取交通流运行状态。构建拍摄路段的高精度地图,获取每一时刻车辆的精确运行状态数据,在此基础上对2个视频进行拼接,最终获得车道位置、速度、车辆编号等8项关键指标,共提取换道行为1 520条,筛选后得到完整的自由换道数据942条。采用车辆轨迹是否持续偏移作为判断换道行为起终点的依据,在此基础上分析换道的时间长度、空间长度、与周边车辆的相互状态以及换道行为的安全性等16个特征参数。得出平均换道时间长度为6.09 s,平均换道空间距离为148.08 m,换道时间与空间长度均符合对数正态分布。换道车辆与目标车道后方车辆的平均距离最小(34.29 m),其相对距离在10 m以内的占28.24%,驾驶人为了加快行驶,在与目标车道后方车辆相对距离较小的情况下,依然采取换道措施。与正前方车辆的相对速度差最大,平均值为10.2 km·h-1,并且在83%的情况下,本车的速度大于前车,说明车辆自由换道是由于前方车辆行驶速度较慢所引起。采用TTC,MTC分别对换道起始时刻的安全性进行分析,并将安全状态划分为4种类型:严重-紧急状态、严重-非紧急状态、非严重-紧急状态、非严重-非紧急状态。其中严重-非紧急,非严重-非紧急这2种状态占比最高。该研究成果对了解中国驾驶人在高速公路上的换道行为特性,以及对建立适用于中国实际交通环境特征的换道行为模型具有一定参考意义。  相似文献   

15.
为实现智能车辆的自主换道操作并满足安全性、舒适性和实时性等约束条件,提出一种针对动态交通环境的换道轨迹规划模型。该模型由道路平面曲线表征模块、路径生成模块以及速度曲线生成模块组成。首先,在道路平面曲线表征模块中,模型基于实时获取的周边道路信息,利用切比雪夫多项式插值法回归拟合出连续可导的道路平面曲线函数,用以保证模型在各种道路平面线形上的普适性。然后,在路径生成模块中,根据换道车辆初始时刻的运动状态,建立一系列多项式方程,并利用牛顿迭代法求解方程未知参数,以此生成连接初始位置和目标位置的换道路径,用以保证换道轨迹的平滑性。最后,在速度曲线生成模块中,以满足防碰撞约束、跟驰加速度约束以及车辆运动状态约束为目标,构建二次规划模型,生成沿着换道路径的车辆速度曲线,用以保证换道轨迹的安全性和舒适性。此外,考虑到周边动态的交通环境,车辆系统在每个时间步内会循环调用提出的模型实时更新换道轨迹,直至车辆到达目标位置。仿真试验结果表明:应用提出的换道轨迹规划模型,车辆能够有效避免与周边动态车辆发生碰撞,成功完成换道;基于二次规划框架,模型优化求解时间明显缩短,满足轨迹规划的实时性和有效性要求。  相似文献   

16.
为了正确刻画智能网联环境下的车辆换道行为,提出基于BP神经网络的车辆换道决策模型.分析了交通流中车辆换道行为,以HighD自然驾驶数据集为数据来源,筛选出1 900组车辆换道和未换道信息作为模型的训练与验证,利用高斯滤波方法拟合目标车辆换道轨迹和横向位移轨迹,选择影响车辆换道决策的7个参数作为模型输入,建立BP神经网络...  相似文献   

17.
为加快紧急车辆抵达事故现场的速度,同时减少紧急车辆优先权对其他车辆的影响,运用车路协同系统,提出避让紧急车辆协同换道策略,通过调整紧急车辆下游车辆位置,实现紧急车辆高效通过路段。以紧急车辆前车(DV)及其相邻目标车道车辆为控制对象,根据相邻车道车辆间距与车车通信范围,搜索DV可换道空间间隙集。以交通流整体恢复稳定时间最小为目标,确定DV换道轨迹和相邻车道协作车辆的速度变化,引导车辆完成协同合流,既能保障车辆安全换道,还能降低换道造成的速度振荡传递。同时,为快速恢复DV换道造成的目标车道车辆速度波动,对上游车辆(UV)采取先进先出规则的换道控制策略。所提协同避让紧急车辆的策略考虑了车辆协同换道对交通流的整体影响,并在原有换道策略的基础上提出了减少速度波动传递的控制方法。案例分析结果表明:采用上下游协同换道策略最短换道时间为6s,此时紧急车辆距前车78.66 m时发送避让信号。同时研究发现,恢复交通流速度稳定所需的时间为29 s,比未采用上下游协同换道策略降低了34%。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号