首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Topological constraints on the dynamics of wasp-waist ecosystems   总被引:1,自引:0,他引:1  
Small pelagic fish species like anchovy or sardines are of high ecological and economical importance. As marine food webs are fished down, these small pelagics tend to be more exploited and overfished. It is not yet very well known what the possible effects of their collapse can be, therefore there is an urgent need to outline a theoretical framework for understanding their dynamics. These fish occupy very special position in food webs, ensuring energy transfer between species lower and higher levels, while forming narrow “wasp-waists” poor in number of species (but very abundant). Our purpose was to quantify the interaction structure of model food webs of equal complexity but different levels of “wasp-waistedness”. We analysed the topological properties of the webs by characterising every direct and indirect interactions between individual species, as well as by assessing the relative positional importance of each species in each web. We found that (1) the shorter the interaction pathways considered, the weaker the predictive power of node degree for positional importance, (2) the importance of species varies more in wasp-waist food webs, (3) if longer indirect chain effects are considered, indirect effects can well be stronger than direct ones, (4) interactions between coexisting wasp-waist species are stronger than the average, and (5) the “self-regulatory” looping effects are also stronger for wasp-waist species. Based on the topological properties of the networks, our results describe constraints acting on the dynamical behaviour of wasp-waist ecosystems. We give explanations, from this viewpoint, for regime shifts in which one WW species replaces another, and for the unpredictable dynamics of these fish stocks. From a marine conservation viewpoint, we illustrate that as the abundance of wasp-waist species decreases, the architecture of energy flows becomes highly vulnerable and unreliable. We provide an approach for quantifying these structural changes.  相似文献   

2.
The brackish Baltic Sea has been seen as particularly suitable for studies of food webs. Compared to fully marine ecosystems, it has low species diversity, which means fewer trophic linkages to analyse. The Baltic Sea is also one of the best-studied areas of the world, suggesting that most data requirements for food web models should be fulfilled. Nevertheless, the influence of physical and biological factors on trophic interactions and biogeochemical patterns varies spatially in the Baltic Sea, adding considerable complexity to food web studies. Food web structure and processes can be described and compared quantitatively between areas by estimating the flow of matter or energy through the organisms. Most such models have been based on carbon, though studies of complementary flows of other elements limiting production, such as nitrogen and phosphorus would be desirable. However, since ratios between carbon and other elements are used in calculating these flows, it is crucial, as a first step, to quantify the flows of carbon as accurately as possible.In this study, we used the EcopathII software (ver 3.1) to analyse models of carbon flow through the food webs in the three main areas of the Baltic Sea; the Baltic proper, Bothnian Sea and Bothnian Bay. A previously published study on carbon flow in the Baltic Sea [Elmgren, R. 1984. Trophic dynamics in the enclosed, brackish Baltic Sea. Rapp. P.-V. Reun. — Cons. Int. Explor. Mer. (183) 152–169.] was complemented with the data on respiration and flow to detritus [Wulff, F., Ulanowicz, R. 1989. A comparative anatomy of the Baltic Sea and Chesapeeake Bay ecosystems. In: F. Wulff, J.G. Field, K.H. Mann (Eds.), Flow Analysis of Marine Ecosystems: Theory and Practice. New York: Springer-Verlag.] in order to present complete mass balance models of carbon. The purpose of re-evaluating previous models with new analytic tools was to check how well their carbon flows balance, and to provide a basis for improved mass balance models using more recent data, including nutrients other than carbon.The resulting mass balance networks for the Baltic proper, Bothnian Sea and the Bothnian Bay were shown to deviate from steady state. There was an organic carbon surplus of 45, 25 and 18 g C m−2 year−1 in the pelagic zones of the Baltic proper, Bothnian Sea and Bothnian Bay, respectively. The Ecopath network analysis confirmed that the overall carbon flow was highest in the Baltic proper, somewhat lower in the Bothnian Sea and much lower in the Bothnian Bay. The only clear differences in food web structure between the basins was that the average trophic level was lower for demersal fish in the Bothnian Sea and higher for macrofauna in the Bothnian Bay, compared to the other basins. The analysis showed weakness in our current understanding in Baltic Sea food webs and highlighted areas where improvements could be made with more recent data.  相似文献   

3.
The North Bay of Biscay continental shelf is a major French demersal fishery, but little was known on the trophic food web of its benthic communities. In order to determine the benthic trophic web, the objectives of this study are to describe the macro- and megafaunal benthic community structure (species richness, abundance and biomass) and to establish the trophic pathways (food sources and trophic levels) by applying carbon and nitrogen stable isotopic analysis to the main benthic and demersal species (invertebrates and fish). Two distinct benthic communities have been identified: a muddy sand community within the central part of the bay, and an outer Bay of Biscay Ditrupa sand community of higher species richness, abundance and biomass than the muddy sand community. Deposit-feeders, suspension feeders and predators, distributed in three main trophic levels, dominate both communities. Large differences in stable carbon ratio values within the primary consumers provide evidence of two different food sources: i) a pelagic food source made up of recent sedimenting particulate organic matter on which zooplankton and suprabenthos feed and ii) a benthic detrital food source supplying deposit feeders and partly benthic suspension feeders. Differences in isotopic signatures were also observed within the upper trophic levels that allowed estimation of the contribution of each food source component to the diet of the upper consumers. Finally, the use of stable isotopic composition together with the species' feeding strategy allow identification of the main differences between the trophic functioning of the two benthic communities and highlight the importance of the role of detrital pathways in the carbon cycling within the continental shelf benthic trophic web.  相似文献   

4.
Mercury (Hg) levels in the Beaufort Sea beluga population have been increasing since the 1990's. Ultimately, it is the Hg content of prey that determines beluga Hg levels. However, the Beaufort Sea beluga diet is not understood, and little is known about the diet Hg sources in their summer habitat. During the summer, they segregate into social groups based on habitat use leading to the hypothesis that they may feed in different food webs explaining Hg dietary sources. Methyl mercury (MeHg) and total mercury (THg) levels were measured in the estuarine-shelf, Amundsen Gulf and epibenthic food webs in the western Canadian Arctic collected during the Canadian Arctic Shelf Exchange Study (CASES) to assess their dietary Hg contribution. To our knowledge, this is the first study to report MeHg levels in estuarine fish and epibenthic invertebrates from the Arctic Ocean. Although the Mackenzie River is a large source of Hg, the estuarine-shelf prey items had the lowest MeHg levels, ranging from 0.1 to 0.27 μg/g dry weight (dw) in arctic cisco (Coregonus autumnalis) and saffron cod (Eleginus gracilis) respectively. Highest MeHg levels occurred in fourhorn sculpin (Myoxocephalus quadricornis) (0.5 μg/g dw) from the epibenthic food web. Beluga hypothesized to feed in the epibenthic and Amundsen Gulf food webs had the highest Hg levels matching with high Hg levels in associated food webs, and estuarine-shelf belugas had the lowest Hg levels (2.6 μg/g dw), corresponding with the low food web Hg levels, supporting the variation in dietary Hg uptake. The trophic level transfer of Hg was similar among the food webs, highlighting the importance of Hg sources at the bottom of the food web as well as food web length. We propose that future biomagnification studies incorporate predator behaviour with food web structure to assist in the evaluation of dietary Hg sources.  相似文献   

5.
The ecological conversion efficiencies in twelve species of fish in the Yellow Sea Ecosystem, i.e., anchovy (Engraulis japonicus), rednose anchovy (Thrissa kammalensis), chub mackerel (Scomber japonicus), halfbeak (Hyporhamphus sajori), gizzard shad (Konosirus punctatus), sand lance (Ammodytes personatus), red seabream (Pagrus major), black porgy (Acanthopagrus schlegeli), black rockfish (Sebastes schlegeli), finespot goby (Chaeturichthys stigmatias), tiger puffer (Takifugu rubripes), and fat greenling (Hexagrammos otakii), were estimated through experiments conducted either in situ or in a laboratory. The ecological conversion efficiencies were significantly different among these species. As indicated, the food conversion efficiencies and the energy conversion efficiencies varied from 12.9% to 42.1% and from 12.7% to 43.0%, respectively. Water temperature and ration level are the main factors influencing the ecological conversion efficiencies of marine fish. The higher conversion efficiency of a given species in a natural ecosystem is acquired only under the moderate environment conditions. A negative relationship between ecological conversion efficiency and trophic level among ten species was observed. Such a relationship indicates that the ecological efficiency in the upper trophic levels would increase after fishing down marine food web in the Yellow Sea ecosystem.  相似文献   

6.
The fluctuations of catches of the deep-sea shrimp Aristeus antennatus (Risso, 1816) were analysed in the 6 ports of Catalonia where production is concentrated, based on monthly landings from 1988 to 2004. The 6 selected ports produced 300 t of red shrimp in 2004, or 80% of the total production in Catalonia. The series for each port showed clear interannual variability, with peaks of production in the early 1990s and more recently from 2001 to 2003. The time periods of the monthly data series, estimated by frequency analysis based on Fourier transform, varied around 7–8 years in the four central ports and 12–13 years in the two northern ports. Additionally, the different curves were not in phase: even in nearby ports, the maximum production is observed in different years. Since the North Atlantic Oscillation (NAO) index is an excellent proxy for long-term series of environmental variables, we aimed to explore relationships between the fluctuation of the NAO index and A. antennatus landings in the Catalan Sea. The correlation between the mean annual NAO index and the annual catches in each port was positive and significant with some time lags (from 1 to 3 years). The existence of clear patterns linking the NAO with marine ecological processes has been demonstrated in many studies, but the underlying ecological mechanisms are far from being well understood. The variations in environmental parameters linked to the NAO may act on biological organisms at different levels (individual, population) through physiology (metabolic and reproductive processes) or through trophic relationships, including ecological cascade effects. We propose that NAO-induced environmental variability may enhance food supply to A. antennatus and hence strengthen the reproductive potential of particular year classes, which result in increased catches 1 to 3 years later, although other possible effects of environmental variability on the population dynamics of this species are worth investigating.  相似文献   

7.
The classic view of the Antarctic pelagic system has suggested that food web dynamics are dominated by the diatom-krill food web link. Recent observations, however, have indicated that this is an oversimplification and that the antarctic food web has a complexity similar to that found in lower latitude systems. More specifically, small particulate feeding protozoans appear to have a much greater importance than was previously assumed.Only a few studies have been sufficiently extensive to characterize the Antarctic pelagic protozoan assemblage. These indicate that heterotrophic flagellates (dinoflagellates and other heterotrophic nanoplankton) and ciliates (mostly non-loricate oligotrichs) dominate the protozooplankton assemblages in surface waters. The combined biomass of protozooplankton has been reported to comprise from < 7 to > 75% of the total nano- and microplankton biomass depending on season and location. Protozoans are also found in sea ice communities where their abundances exceed those typically found in the plankton. Several protozoan species occupy both ice and water habitats, suggesting that seasonally melting sea ice may be the source of ice-edge protozooplankton assemblages.The feeding rates of protozooplankton in Antarctic waters are poorly documented. Consumption estimates based on clearance rates and some preliminary grazing experiments, however, indicate that the protozooplankton should be capable of utilizing a significant proportion of the daily primary and bacterioplankton production. Protozoans may contribute to vertical flux, but present evidence suggests that their contribution will be lower than from other sources.  相似文献   

8.
We compared an idealised mathematical model of the lower part of the pelagic food web to experimental data from a mesocosm experiment in which the supplies of mineral nutrients (nitrogen and phosphorous), bioavailable dissolved organic carbon (BDOC, as glucose), and silicate were manipulated. The central hypothesis of the experiment was that bacterial consumption of BDOC depends on whether the growth rate of heterotrophic bacteria is limited by organic-C or by mineral nutrients. In previous work, this hypothesis was examined qualitatively using a conceptual food web model. Here we explore the extent to which a “simplest possible” mathematical version of this conceptual model can reproduce the observed dynamics. The model combines algal–bacterial competition for mineral nutrients (phosphorous) and accounts for alternative limitation of bacterial and diatom growth rates by organic carbon and by silicate, respectively. Due to a slower succession in the diatom–copepod, compared to the flagellate–ciliate link, silicate availability increases the magnitude and extends the duration of phytoplankton blooms induced by mineral nutrient addition. As a result, Si interferes negatively with bacterial consumption of BDOC consumption by increasing and prolonging algal–bacterial competition for mineral nutrients. In order to reproduce the difference in primary production between Si and non-Si amended treatments, we had to assume a carbon overflow mechanism in diatom C-fixation. This model satisfactorily reproduced central features observed in the mesocosm experiment, including the dynamics of glucose consumption, algal, bacterial, and mesozooplankton biomass. While the parameter set chosen allows the model to reproduce the pattern seen in bacterial production, we were not able to find a single set of parameters that simultaneously reproduces both the level and the pattern observed for bacterial production. Profound changes in bacterial morphology and stoichiometry were reported in glucose-amended mesocosms. Our “simplest possible” model with one bacterial population with fixed stoichiometry cannot reproduce this, and we suggest that a more elaborate representation of the bacterial community is required for more accurate reproduction of bacterial production.  相似文献   

9.
Community-level processes may shape food web structure. In this paper, a graph theoretical study of the weighted trophic flow network of the Chesapeake Bay ecosystem shows how important are positions in the energy (carbon) transport system. The positional importance of components is compared to the quantity of energy flowing through them. We suggest that the congruence between important network positions and large flows refers to the larger role of trophic interactions in community control. A seasonal dynamical analysis of the network has led us to the conclusion that winter is the season when the importance of predation is the highest.  相似文献   

10.
A total of 2759 stomachs collected from a bottom trawl survey carried out by R/V “Bei Dou” in the Yellow Sea between 32°00 and 36°30N in autumn 2000 and spring 2001 were examined. The trophic levels (TL) of eight dominant fish species were calculated based on stomach contents, and trophic levels of 17 dominant species in the Yellow Sea and the Bohai Sea reported in later 1950s and mid-1980s were estimated so as to be comparable. The results indicated that the mean trophic level at high trophic levels declined from 4.06 in 1959–1960 to 3.41 in 1998–1999, or 0.16–0.19·decade− 1 (mean 0.17·decade− 1) in the Bohai Sea, and from 3.61 in 1985–1986 to 3.40 in 2000–2001, or 0.14·decade− 1 in the Yellow Sea; all higher than global trend. The dominant species composition in the Yellow Sea and the Bohai Sea changed, with the percentage of planktivorous species increases and piscivorous or omnivorous species decreases, and this was one of the main reasons for the decline in mean trophic level at high tropic levels. Another main reason was intraspecific changes in TL. Similarly, many factors caused decline of trophic levels in the dominant fish species in the Yellow Sea and the Bohai Sea. Firstly, TL of the same prey got lower, and anchovy (Engraulis japonicus) as prey was most representative. Secondly, TLs of diet composition getting lower resulted in not only decline of trophic levels but also changed feeding habits of some species, such as spotted velvetfish (Erisphex pottii) and Trichiurus muticus in the Yellow Sea. Thirdly, species size getting smaller also resulted in not only decline of trophic levels but also changed feeding habits of some species, such as Bambay duck (Harpodon nehereus) and largehead hairtail (Trichiurus haumela). Furthermore, fishing pressure and climate change may be interfering to cause fishing down the food web in the China coastal ocean.  相似文献   

11.
At great scales of time and space, the dynamics of the Mediterranean Sea, a concentration basin, are mainly linked to its freshwater budget. This budget is subject to evolutions due to man's use of freshwater and to climatic changes affecting precipitation and/or evaporation. Marine dynamics and Atlantic, atmospheric and terrestrial inputs are strong constraints for the geochemical behaviour of the Mediterranean Sea. From measurements made during the last decades in the deep western water, it appeared that temperature, salinity, nutrients and trace metal concentrations were changing with time. In spite of its depth, the Mediterranean Sea looks like a coastal ocean, according to its coast length, watershed and number of inhabitants and to its fast response to climatic and environmental changes. The changes discovered in deep homogeneous waters are signatures of evolutions occurred in the surface layer. But in this layer and particularly in coastal waters, climatic and/or environmental trends may be masked by seasonal and interannual variabilities of not only physical and chemical characteristics but also climatic forcing or anthropic inputs. Analyses of river runoff, atmospheric inputs or climatic trends together with marine evolutions indicate constraints concerning probable changes in the coastal sea and/or in the surface water and processes involved at the interfaces. Moreover, changes observed in coastal or deep-water constitute new constraints for the modelling of the marine circulation and the transfer of matter.  相似文献   

12.
During the last 30 years, at-sea studies of seabirds and marine mammals in the oceans south of the Subtropical Front have described an association with major frontal areas. More recently, the advancement in microtechnology has allowed the tracking of individuals and investigations into how these marine predators actually use the frontal zones. In this review, we examine 1) the relative importance to apex predators of the different frontal zones in terms of spatial distribution and carbon flux; 2) the processes that determine their preferential use; and 3) how the mesoscale dynamics of frontal structures drive at-sea foraging strategies of these predators. We review published results from southern waters and place them in a broader context with respect to what has been learned about the importance of fronts in oceans farther north.Some fronts constitute important boundaries for seabird communities in southern waters. At a mesoscale the maximum values of seabird diversity and abundance correspond to the location of the main fronts. At-sea surveys show a strong curvilinear correlation between seabird abundance and sea surface temperatures. High mean species richness and diversity for whales and seabirds are consistently associated with the southern water mass boundary of the Antarctic Circumpolar Current, the Subtropical Front and the Subantarctic Front; in the case of the Polar Front mean seabird densities are more variable. At small-scales, variation in seabird occurrence has been directly related to the processes at fronts in a limited number of cases. A significant positive relation was found between some plankton feeding species and frontal temperature gradient–phytoplankton variables.Telemetric studies have revealed that several apex predators (penguins, albatrosses, seals) perform long, directed foraging trips either to the Subtropical front or Polar Front, depending on locality. Seabirds with low flight costs, such as albatrosses, are able to reach fronts at long distances from colonies, showing variable foraging strategies as a function of the distances involved. Diving birds such as King penguins, that travel at a higher cost and lower speed, rely on the predictable spatial distribution of mesopelagic fish found close to the Polar Front. They may use the currents associated with eddies as oceanographic cues in the active search for frontal zones. Once in these areas they dive preferentially in and below the depth of the thermocline where catches per unit effort are high. Elephant seals concentrate foraging activity principally inside or at the boundary of cyclonic eddies. These mesoscale features appear to offer exceptional productivity favourable for foraging by various diving top predators.The connection between biophysical parameters at fronts and predators is likely to be made through biological enhancement. Top predators appear to forage at locations where prey are advected by physical processes and others where prey are produced locally. Long-term research on at-sea distributions and demographic parameters of top predators are essential to assess the consequences of potential shift in front distributions in relation to global warming. Such environmental changes would add to the impact of fish extraction by the industrial fisheries on the southern food webs.  相似文献   

13.
Future aspects in marine ecosystem modelling   总被引:1,自引:0,他引:1  
Existing ecosystem models are briefly presented and summarised. The problem of coupling physical and biological models as well as aspects of prediction and predictability are discussed. The general perception that marine ecosystems are inherently unpredictable due to non-linearity becomes questionable if the response of climate variability in marine ecosystems is analysed. Many authors have shown correlations between climate variability and the variability of abundance or biomass of marine organisms such as phytoplankton, zooplankton, benthos or fish recruitment in different parts of the world ocean. In the northern hemisphere, certain species show a linear response to climate variability mainly during winter and spring. However, the underlying mechanisms are not well understood. Often, a phase lag can be observed between climate variability and the reaction of organisms. The identification of a plausible mediator between climate and biology is difficult, since all possible physicochemical mechanisms having a direct or indirect influence on the variability of abundance or biomass of marine organisms have to be considered as mediator.The understanding of the reason of the phase lag, which possibly implies a “biological memory”, and the identification of all possible mediators are necessary to predict the response of marine organisms to climate variability. The identification of mediators will result in an improvement of coupled models, a deeper understanding of physical–biological interaction and the improvement of predictive capability of marine ecosystem models.  相似文献   

14.
The implementation of marine protected areas (MPAs) for fisheries management has increased recently due to the perceived role of MPAs in conserving biodiversity, increasing fish stocks, and enhancing the food security of coastal communities. However, it is unclear whether MPAs may restrict the availability of marine resources and decrease overall food security and the health of the people. In the Roviana Lagoon of the Solomon Islands, we conducted cross-comparisons of villages with MPAs and a village without an MPA to assess whether MPAs influenced local perceptions of governance, environmental change, livelihood strategies, and actual human nutrition and health. Results showed that residents of villages with effective MPAs had higher energy and protein intake than those who had no MPA or an ineffective MPA. We conclude that “no-take” marine reserves do not have adverse effects and that when MPAs are effectively sustained they may enhance local nutrition and health.  相似文献   

15.
The structure and dynamics of the benthic invertebrate megafauna of the Southeastern Brazilian shelf were studied over a 2-year period. Two regions presenting different oceanographic conditions, Ubatuba-SP and Cabo Frio-RJ were compared in terms of biomass, density of organisms and species richness. Two to three 30-min tows were undertaken at each of the stations, located at 40 and 100 m isobath, in a normal transect offshore of both regions. Faunal distributional patterns correlated with water mass dynamics, depth and sediment parameters. In the Cabo Frio region, subjected to a Ekman-driven seasonal coastal upwelling, the impact of the South Atlantic Central Water (SACW) on the inner shelf leads to a change in the benthic communities, with a high dominance of top carnivores such as the crab Portunus spinicarpus and the sea-star Astropecten brasiliensis, which accounted for the larger part of the total biomass. Distinct species associations were found in each of the two regions and the total biomass at Cabo Frio inner shelf was almost twice that of Ubatuba during the 2002 summer, when a marked upwelling was verified. The relationship between megabenthic biomass and input of organic matter to the sea floor during upwelling events is discussed.  相似文献   

16.
The development of Integrated Coastal Management (ICM) in the Philippines has been underway for more than 30 years. As coastal communities continue to face dwindling resources from both the land and sea, marine protected areas (MPAs) have been regularly utilized as a community-based marine conservation tool. Recently, marine tourism has begun to exert influence as a driver utilized by local communities to promote the establishment of MPAs. Revenue generated through user-fee systems has begun to influence and shape broker–local–tourist (BLT) interactions in Moalboal, Cebu, Philippines. In this article, an account of the social dynamics surrounding MPAs is presented, sources of tension are identified, and recommendations proposed.  相似文献   

17.
The complexity of the dynamic response of offshore marine structures requires advanced simulations tools for the accurate assessment of the seakeeping behaviour of these devices. The aim of this work is to present a new time-domain model for solving the dynamics of moored floating marine devices, specifically offshore wind turbines, subjected to non-linear environmental loads. The paper first introduces the formulation of the second-order wave radiation-diffraction solver, designed for calculating the wave-floater interaction. Then, the solver of the mooring dynamics, based on a non-linear Finite Element Method (FEM) approach, is presented. Next, the procedure developed for coupling the floater dynamics model with the mooring model is described. Some validation examples of the developed models, and comparisons among different mooring approaches, are presented. Finally, a study of the OC3 floating wind turbine concept is performed to analyze the influence of the mooring model in the dynamics of the platform and the tension in the mooring lines. The work comes to the conclusion that the coupling of a dynamic mooring model along with a second-order wave radiation-diffraction solver can offer realistic predictions of the floating wind turbine performance.  相似文献   

18.
细长海洋结构物涡激振动研究综述   总被引:5,自引:0,他引:5  
随着世界范围内深海石油开采的需要,近年来关于海洋结构物涡激振动的研究越来越受到重视.虽然此问题在数值模拟和实验方面都已取得了一定的进展,但是还有许多问题尚待解决.同时,新型海洋结构物的引入给涡激振动的预报方法和抑振手段提出了新的挑战.因此,细长海洋结构物的涡激振动仍将是未来几年里备受关注的研究课题.本文在介绍有关涡激振动基本概念和理论背景的基础上,总结了近年来关于以深水立管为代表的海洋结构物涡激振动的研究与进展,包括对现有涡激振动分析工具的分类与评估;对柱体及海洋结构物涡激振动的实验研究;对深水立管与涡激振动相关的疲劳评估准则的研究;海洋结构物的横向、流向及轴向涡激振动的耦合作用研究;关于海洋结构物涡激振动的抑振措施和设备的理论及实验研究.本文着重介绍了计算流体力学方法在海洋结构物涡激振动研究中的应用和进展.最后,对海洋结构物涡激振动相关的研究热点的现状进行了总结并对今后工作提出了展望.  相似文献   

19.
Dynamics of inorganic nutrient species in the Bohai seawaters   总被引:3,自引:0,他引:3  
Within the frame of a Sino-German Joint Research Program, two cruises of “R/V Dong Fang Hong 2” were carried out in September–October 1998 and April–May 1999, respectively, to understand the dynamics of nutrients in the Bohai. Nutrient species (NO3, NO2, NH4+, PO43− and SiO32−) are determined colorimetrically on board for five anchor and 30 grid stations. In situ incubation experiments are performed to determine planktonic nutrient uptake and benthic exchange flux. Nutrient concentrations display short-term variability and seasonal change in the Bohai, with higher levels in shallow coastal waters than in the Central Bohai. The influence of riverine discharge on nutrient levels can be seen from salinity isopleths, nutrient distribution and species ratios. Near-bottom (nb) waters have similar nutrient concentrations as to the surface waters in the Central Bohai, whereas stratification takes place in the Bohai Strait and North Yellow Sea. In situ incubation experiments provide evidence that the uptake ratio (i.e. N, P) by phytoplankton is proportional to the ratios among nutrient species in ambient waters. Based on the data of this study and previously publications, a preliminary estimate of nutrient budgets via riverine input and atmospheric deposition is established. The results indicate that atmospheric deposition gains importance over rivers in delivering nutrients into the Bohai and sustain the new production, following recent decrease in riverine inflow caused by drought periods in North China and damming practices. A historical review of nutrient data indicates that concentrations of nitrogen increase and phosphorus and silica decrease in the Central Bohai over last 40 years. This potentially has an important influence on the health of ecosystem in Bohai (e.g. food web and community structure), though further study is needed to examine the scenario in more detail.  相似文献   

20.
The set of equations for global ocean biogeochemistry deterministic models have been formulated in a comprehensive and unified form in order to use them in numerical simulations of the marine ecosystem for climate change studies (PELAGOS, PELAgic biogeochemistry for Global Ocean Simulations). The fundamental approach stems from the representation of marine trophic interactions and major biogeochemical cycles introduced in the European Regional Seas Ecosystem Model (ERSEM). Our theoretical formulation revisits and generalizes the stoichiometric approach of ERSEM by defining the state variables as Chemical Functional Families (CFF). CFFs are further subdivided into living, non-living and inorganic components. Living CFFs are the basis for the definition of Living Functional Groups, the biomass-based functional prototype of the real organisms. Both CFFs and LFGs are theoretical constructs which allow us to relate measurable properties of marine biogeochemistry to the state variables used in deterministic models. This approach is sufficiently generic that may be used to describe other existing biomass-based ecosystem model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号