首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
盾构法修建城市地铁时,盾构掘进参数对于控制地表沉降、保证施工安全等具有重要影响。以深圳地铁7号线盾构隧道下穿既有2号线为工程背景,针对在软硬不均地层情况下盾构隧道下穿既有隧道及过街通道,运用ABAQUS建立三维计算模型,对盾构施工进行全过程模拟及掘进参数优化分析。研究结果表明:①土仓压力及注浆压力对过街通道沉降相对于地表影响较大,施工过程中应当注意对过街通道底部进行监测;②对于软硬不均地层盾构下穿既有隧道及过街通道采用0.30~0.40 MPa土仓压力以及采用0.25~0.30 MPa注浆压力施工较为合理  相似文献   

2.
地铁盾构正交下穿隧道施工风险控制措施   总被引:1,自引:0,他引:1  
夏金春 《隧道建设》2017,37(Z1):111-115
为减小新建地铁盾构隧道下穿施工对既有运营市政隧道的影响,采取土体加固、加强底板配筋等前期预留措施,并在下穿过程中通过分析监测数据变化规律,进一步提出适时调整盾构掘进参数、注浆参数、进行土体改良等措施,达到保障既有运营隧道安全、确保地铁隧道施工安全和质量的目的。  相似文献   

3.
该文采用数值模拟方法分析超大直径土压平衡盾构下穿人行通道施工时的土舱压力设定;提出主要通过控制注浆压力来控制穿越阶段的同步注浆施工;建议将穿越段分为不同的控制阶段,各区长度的确定则要综合考虑盾构穿越层土压力的大小、盾构机推进的影响范围、盾构机土舱压力的调整能力等。推进过程中结合其他措施将某隧道近距离下穿人行通道的不均匀变形控制在2mm左右。  相似文献   

4.
杨建烽  郑余朝  陈强  严石友 《隧道建设》2019,39(Z2):385-392
为探究既有区间在新建隧道盾构下穿过程中施工沉降控制方法与既有结构沉降变化之间的关系,依托深圳地铁10 号线岗厦北站—莲花村站区间(以下简称岗莲区间)左线隧道盾构下穿既有2 号线工程开展既有结构变形监测,结合现场监测数据,建立模拟隧道施工的计算模型,分析得到既有结构在下穿过程中变形与下穿施工控制方法间的关系。研究表明: 1)同步注浆等施工控制方式对既有结构初期变形影响较大,二次注浆对变形稳定时间及大小影响较大; 2)下穿过程需重视盾构土舱压力的维持,并采取保压措施,在较高水平上维持土舱压力,保持刀盘前方水土; 3)管片脱出盾尾后及时二次注浆,充分充填壁后空隙,在既有结构沉降较大时应及时二次注浆进行补救。  相似文献   

5.
针对隧道工程中新建隧道小角度斜下穿既有隧道工程中亟待解决的难题,以西安地铁1号线二期张家村-后卫寨区间左线盾构下穿既有1号线出入段线为工程依托,通过现场调研、数值模拟和现场监测等方法进行施工参数对轨道既有隧道和轨道高差的沉降规律(重点进行对轨道高差的控制)研究。选取土仓压力、注浆压力、注浆量等施工参数,其中注浆量用注浆厚度间接体现,构建三维数值计算模型,并对结果进行分析,依据分析结果给出合理的盾构施工参数建议值,在此基础上进行现场监测,验证给出的施工参数建议值对轨道高差的控制效果。研究结果表明:随着土仓压力、注浆压力的增大,既有隧道的沉降和轨道高差不断减小,当其土仓压力超过0.10 MPa、注浆压力超过0.22 MPa时,既有隧道沉降和轨道高差控制效果不再明显提高;既有隧道沉降和轨道高差随着注浆厚度的增大而减小,其与注浆厚度均近似呈线性关系,因此适当增大注浆范围是控制既有隧道沉降和轨道高差的有效方法;确定的施工参数建议值为0.10 MPa(土仓压力)+0.22 MPa(注浆压力)+0.23 m(注浆厚度);通过现场监测,既有地铁隧道道床上C,B,G,F四条测线上最大沉降量均在6 mm左右(小于20 mm),最大轨道高差为1.2 mm(小于4 mm),均小于规范所要求的控制值,表明以上施工参数建议值对于既有隧道沉降和轨道高差起到了很好控制效果。  相似文献   

6.
易丹  严德添  党军 《隧道建设》2018,38(4):594-602
以川大停车场下穿人民南路地下人行通道矩形顶管隧道工程为依托,采用数值模拟方法对大断面矩形土压平衡式顶管隧道上跨地铁运营区间隧道所引起的地铁隧道变形进行全过程分析研究,并将模拟结果与现场监测数据进行对比,验证模型的合理性。主要结论如下: 1)顶管法隧道上跨施工引发的既有地铁隧道竖向变形受前期掌子面支护压力影响较大,随着开挖面的推进,开挖卸载效应逐渐占据主导地位; 2)地铁隧道横向位移受顶管隧道掌子面支护压力和开挖卸载效应的共同影响,且地铁隧道管片衬砌上半断面的横向位移对掌子面支护压力极为敏感。  相似文献   

7.
针对隧道工程中新建隧道小角度斜下穿既有隧道工程中亟待解决的难题,以西安地铁1号线二期张家村-后卫寨区间左线盾构下穿既有1号线出入段线为工程依托,通过现场调研、数值模拟和现场监测等方法进行施工参数对轨道既有隧道和轨道高差的沉降规律(重点进行对轨道高差的控制)研究。选取土仓压力、注浆压力、注浆量等施工参数,其中注浆量用注浆厚度间接体现,构建三维数值计算模型,并对结果进行分析,依据分析结果给出合理的盾构施工参数建议值,在此基础上进行现场监测,验证给出的施工参数建议值对轨道高差的控制效果。研究结果表明:随着土仓压力、注浆压力的增大,既有隧道的沉降和轨道高差不断减小,当其土仓压力超过0.10 MPa、注浆压力超过0.22 MPa时,既有隧道沉降和轨道高差控制效果不再明显提高;既有隧道沉降和轨道高差随着注浆厚度的增大而减小,其与注浆厚度均近似呈线性关系,因此适当增大注浆范围是控制既有隧道沉降和轨道高差的有效方法;确定的施工参数建议值为0.10 MPa(土仓压力)+0.22 MPa(注浆压力)+0.23 m(注浆厚度);通过现场监测,既有地铁隧道道床上C,B,G,F四条测线上最大沉降量均在6 mm左右(小于20 mm),最大轨道高差为1.2 mm(小于4 mm),均小于规范所要求的控制值,表明以上施工参数建议值对于既有隧道沉降和轨道高差起到了很好控制效果。  相似文献   

8.
摩擦力是盾构下穿对既有结构施工力学行为影响的重要因素。为明确盾构下穿过程中土舱压力、注浆压力、摩擦力对既有隧道变形的影响规律,给出合理的施工技术参数,考虑盾构自重及土压力分布特征,推导了摩擦力计算公式,分析了摩擦力分布特征,将此计算结果通过Fish语言写入FLAC3D有限差分软件,结合实体工程,对盾构下穿既有地铁隧道施工技术参数进行了系统研究,并通过实测数据验证了研究成果的可靠性。研究结果表明:1)盾壳与土体之间的摩擦力沿盾壳四周不均匀分布,量值随土体内摩擦角、重度及隧道埋深的增大而增加;2)盾构下穿过程中,既有结构竖向位移表现为先隆起、后沉降,其中土舱压力、摩擦力是造成既有结构隆起的主要原因,隆起量随土舱压力、摩擦力的增大而增大;3)盾尾脱离后既有结构沉降主要受注浆压力、摩擦力的影响,沉降量则随注浆压力的增大、摩擦力的减小而减小;4)与不考虑摩擦力的数值计算模型相比,考虑摩擦力的模型计算结果与工程实测数据吻合更好,且既有2号线运营地铁隧道结构变形满足规范所要求的控制标准,验证了研究成果的合理性与适应性。  相似文献   

9.
地铁盾构隧道下穿宁启铁路的变形影响规律及控制技术   总被引:2,自引:0,他引:2  
冯超  高志刚 《隧道建设》2015,35(10):1015-1021
地铁隧道在下穿既有铁路时,保证其安全运营是施工中的关键问题之一。为保证南京地铁S8线某段盾构隧道下穿宁启铁路桥涵的安全,通过建立FLAC三维数值模型进行计算分析,并将监测结果和计算结果进行对比分析,得出以下结论:1)盾构下穿期间,在对地层进行水泥注浆、加固土体的同时,还应加强同步注浆和二次注浆,设定施工控制区域,并将盾构施工参数精确到每一环。2)地层加固前后的地表变形规律,采取加固措施可以将地铁下穿带来的铁路沉降影响降至0.7 mm。3)根据现场情况制定了地表变形监测方案。结果显示,路基地表沉降较之桥涵沉降值显著一些,但仍处于安全范围之内。  相似文献   

10.
陈卓 《路基工程》2018,(6):182-185
以城际快速轨道南京南站至禄口机场站1号盾构井工程为依托,分析土压平衡盾构模式掘进对软岩地层地表影响,减小城市环境下土压平衡盾构模式掘进对下穿建筑物影响,确保隧道施工安全。为此,运用FLAC显式有限差分软件进行建模,通过对土仓压力、同步注浆效果和出碴量等影响因素的分析,研究了土压平衡盾构模式掘进对软岩地层地表沉降的影响,确定了合理的掘进控制参数。  相似文献   

11.
为解决穿越大埋深富水节理裂隙发育岩层的土压平衡盾构隧道施工过程中发生的开挖面涌水和地表沉降过大的问题,依托广佛环线沙堤隧道工程,对土压平衡盾构填舱注浆施工技术进行研究,并利用有限差分软件FLAC3D对填舱注浆技术进行数值模拟分析。研究结果表明: 1)土压平衡盾构穿越深埋富水裂隙岩层时,隧道洞周围岩变形较小,而地表沉降及建筑物变形对地下水流失较为敏感; 2)将气压平衡和土舱填舱注浆处理技术相结合,辅以微扰动等施工控制方法的填舱注浆成套施工技术能够有效解决施工过程中的喷涌现象及地表建(构)筑物沉降过大的问题; 3)采用填舱注浆技术进行堵水时,应保证开挖面内填舱注浆范围和注浆参数选取的合理性,并应考虑注浆厚度对施工进度的影响。  相似文献   

12.
朱红霞 《隧道建设》2016,36(6):748-755
以武汉地铁3号线王家墩北站-范湖站盾构区间为背景,研究在未进行加固承压水粉细砂层中近距离下穿既有隧道施工和量测技术,提出对既有线路隧道进行补充加固体系及相应的参数,同时提出土压平衡盾构在下穿位于软弱地层中的既有地铁线隧道的掘进参数体系和控制难点,采用既有线内沉降监测及隧道结构收敛监测技术对既有隧道进行变形和沉降监测,确保既有隧道的安全。  相似文献   

13.
为解决采用传统矿山法修建废水泵房存在工期长、风险大等问题以及在机械法联络通道内修建废水泵房作业空间狭小、二次拆除管片风险大等问题,提出采用机械法在盾构隧道内修建废水泵房,明确上部接口和下部封底2项关键技术,并通过数值模拟分析地层水压力对封底混凝土力学性能的影响,最后将该修建技术应用到北京地铁17号线望—勇区间隧道中。研究结果表明: 1)考虑安全系数不小于1.4的情况下,1.0 m厚C30混凝土封底水压可用于不超过0.3 MPa水压的地层条件; 2)封底混凝土与外盾相连接的角部为薄弱部位,其破坏模式呈异形“八”字分布; 3)盾构隧道内采用机械法修建废水泵房能有效保障施工质量,泵房容积大,可有效减少潜水泵的启停次数,降低维修时间和成本,减少对线路运营的影响。  相似文献   

14.
吴红博  周传波  蒋楠  高坛 《隧道建设》2019,39(2):219-226
为分析圆砾地层双线地铁隧道分别采用泥水和土压平衡盾构施工时的地层变形特征,以南宁地铁3号线东葛路站-滨湖路站区间盾构施工工程为背景,采用现场监测数据分析2种盾构施工时的地表横向沉降特征和监测点纵向沉降历程特征。利用FLAC3D软件对2种盾构工法进行简化模拟,验证模拟方法的可行性; 设计双线地铁隧道分别采用土压平衡盾构和泥水平衡盾构、全部采用泥水平衡盾构、全部采用土压平衡盾构3种工况的模拟方案,研究3种工况下的地层变形特征。研究结果表明: 1)双线地铁隧道采用2种类型盾构施工时,地层沉降曲线偏向土压平衡盾构施工的隧道一侧; 采用同种类型盾构施工时,地层距离隧道越近,沉降曲线呈“W”特征越明显; 2)双线地铁隧道采用土压平衡盾构施工时各地层沉降较大,地表横向沉降影响范围约50 m; 采用泥水平衡盾构施工时各地层沉降相对较小,地表横向沉降影响范围约30 m; 3)3种工况下,双线地铁隧道采用土压平衡盾构施工时引起的地表水平位移最大。  相似文献   

15.
土压平衡盾构广泛应用于地铁隧道施工中,其施工过程产生的地表沉降及相关问题直接影响隧道施工安全。以成都地铁3号线某区间盾构隧道工程为例,应用理论方法计算盾构开挖面压力取值范围。结合工程地质条件、施工参数、不同开挖面压力和地层损失率,利用嵌入了土应力路径本构模型的ABAQUS软件进行盾构开挖三维模拟,得到了卵石地层盾构施工引起的地表沉降规律,并通过与现场地表沉降监测结果对比,验证了此模型的合理性,确定了合理的开挖面压力取值范围。最后,进一步分析了实际盾构施工开挖面压力值与地表沉降值之间的规律,评价施工时设定的开挖面压力值的优劣。  相似文献   

16.
为研究盾构下穿对地铁双圆隧道变形的影响,以上海地铁14号线盾构下穿地铁6号线双圆隧道为工程背景,对双圆隧道在前后2次盾构下穿过程中的变形进行实测分析。结果发现: 1)盾构穿越导致双圆隧道发生竖向隆起变形和双线差异变形产生的断面扭转变形,断面扭转变形引起的轨道变形难于控制; 2)双圆隧道竖向变形为隆起变形,其变形分布形态随切口位置变化而变化,穿越后交叉点附近呈现特有的“驼峰状”隆起分布; 3)2次穿越扰动与叠加效应显著,表现为隧道隆起变形时间延长,累计量增大,2次穿越引起的最大变形位置发生改变; 4)双圆隧道的扭转变形随切口位置呈波浪形动态变化,出现多个拐弯点,对其环缝受力与变形十分不利,第2次穿越时的扭转变形较第1次穿越有所减小; 5)双圆隧道断面最不利扭转出现时刻不同于隧道最大变形出现时刻,且扭转最不利位置与最大隆沉发生位置产生了错位; 6)盾尾注浆对双圆隧道变形的控制效果明显,但将导致双圆隧道的扭转变形增大。  相似文献   

17.
为了研究氯离子侵蚀对混凝土墩柱保护层厚度的影响规律,对不同矿物掺合料,以及不同掺合比例下的混凝土抗氯离子渗透性能及其保护层厚度影响系数进行分析。研究表明:用一定比例的矿物掺合料代替水泥,能够有效提高混凝土抗氯离子性能和降低保护层厚度影响系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号