首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 609 毫秒
1.
鉴于高填方路堤对地基承载力要求高且在填筑过程中易发生大规模沉降,采用FLAC3D对高路堤施工期的路基中心处竖向沉降和路基坡脚处水平侧向位移进行模拟,分析了影响高路堤施工期变形的主要因素。结果表明,路堤中心处沉降量、坡脚侧向位移都随路堤土高度和重度的增加而增大;但随着路堤土弹性模量的增大,路堤中心处沉降量逐渐减小,而坡脚侧向位移逐渐增大,且二者随模量变化的趋势并不显著。  相似文献   

2.
李世昌  余飞  郭建华 《公路》2021,(1):37-43
为保证地基稳定,分5级填筑软土地基路堤。数值模拟结果表明,每级路堤荷载下软土地基最大地表沉降位移和最大侧向位移分别发生在路堤中心处地基表面和路堤坡脚下某一深度。在路堤下布置剖面沉降管,在路堤坡脚处布置水平测斜仪,获取软土地基变形。结合现场监测数据,运用双曲线沉降预测法求得路堤填筑各级沉降期的最优时长,并计算路堤中心地表日最大沉降位移和坡脚处地基日最大水平位移,多指标控制路堤各阶段填筑进度,合理安排施工。  相似文献   

3.
高填方路堤结构具有沉降量大、沉降不均匀等特点,极易产生路堤病害。为解决此类问题,文中以十巫北高速公路工程为依托,对绢云母片岩土石混合料高填方路堤在不同工况下填筑过程中的变形特征及其规律进行研究。结果表明,在填筑过程中,路堤最大沉降随填筑层厚的增加而增大,而层厚对侧向位移没有明显影响;高填路堤填筑高度与沉降和侧向位移呈正相关,坡脚附近出现了隆起,且隆起值也与填筑高度呈正相关;路堤的沉降和侧向位移随弹性模量的提高逐渐减小,在弹性模量大于15 MPa后,对路堤沉降和侧向位移影响明显变小;路堤的最大沉降量、侧向位移随着路基坡度的减缓而增大;路堤中心沉降和侧向位移随着压实度的增大而减少;现场观测数据验证了模拟的准确性,说明路堤沉降的规律为沉降在前期发展较快,后期逐渐减缓趋于稳定。  相似文献   

4.
软土地基高速公路扩建中新老路堤相互作用数值分析   总被引:9,自引:1,他引:9  
采用弹塑性有限元方法分析了老路边坡开挖和加宽部分路堤填筑对老路变形特性的影响。计算结果表明:原有路堤边坡削坡和台阶开挖将会使得老路中心的竖向沉降略有增加,坡脚侧向位移回缩,且不同开挖方式对原有路堤影响不同;加宽部分路堤的填筑将会使得老路中心上抬,路肩点发生较大附加沉降,引起老路路肩与路中心之间产生过大的附加差异沉降,明显加大路面横坡,极易导致对老路路堤、路面的拉裂,降低道路等级,必须采用合适的软基处理方案对加宽部分软基进行处理。另外,宽路堤的变形特性不同于窄路堤,其沉降呈中央小两边大的形式,并且最大沉降位置随路堤高度的增加向路堤中央移动,了解宽路堤变形的这一特性有助于其软基处理方案以及加固效果监测方案的优化。  相似文献   

5.
以沪通铁路Ⅵ标段工程为依托,通过ANSYS数值模拟软土路基路堤分层填筑,分析在分层填筑过程中的沉降规律,并在软土路基路堤分层填筑过程中,严格监测路基的沉降和变形。研究结果表明:软土路基路堤在分层填筑过程中,路堤中线地表处的沉降量最大,然后向两侧逐渐减小,横向影响范围主要为路基底面宽度;分层填筑过程中,路堤中心最大沉降量为9.20 mm/d,边桩最大水平位移为0.53 mm/d,均满足设计要求。  相似文献   

6.
依托岢临高速公路,选取一填土高度为39.2m的超高填方路堤试验段,建立了FLAC3D数值分析模型,分析填筑过程中黄土地区超高填方加筋路堤作用机理.采用分级加载的方式模拟路堤的填筑过程,对路堤边坡坡脚、坡顶及变坡点等位置的沉降、水平位移和格栅轴力的变化规律进行监测分析.结果表明:路堤沉降随着填土高度增加而逐渐增加,且路堤中部沉降相对较大;路堤水平位移随填土高度增大而逐渐减小,且其方向逐渐由正向变为负向,路堤坡脚附近水平位移相对较大;路基横断面方向上的土工格栅轴力在一定长度范围内为零,此后呈先增大后减小的抛物线形变化,且格栅上覆填土高度越大,格栅轴力越大.  相似文献   

7.
刘志强 《路基工程》2019,(5):127-131
为研究高路堤沉降变形规律,采用水准测量及全站仪坐标测量的方法,对云湛高速公路(新阳段)高路堤顶沉降、坡脚水平位移及隆起量进行监测,绘制了总位移(累计沉降量)-时间曲线,结合项目概况、施工进度及控制标准,分析填土高度对累计沉降量-时间曲线的影响。结果表明:①坡脚水平位移及沉降量随着填土高度的升高,变形呈线性上升;间歇期变形速率放缓;填土完成后变形速率减小,逐渐趋于稳定;②路堤顶沉降变形过程分加速期、放缓期及基本稳定期三个阶段。  相似文献   

8.
依托云南省昌保高速公路工程,建立有限元数值模型,并进行了静力分析,研究泡沫轻质土陡坡路堤的工后变形、地震荷载下地基-路基接触面的作用机理、位移反应;分析路堤的整体稳定性。结果表明:随着地基-路基接触面(路基基底面)的摩擦系数值增大,路基表面不均匀沉降得到有效抑制和路基临空面的水平位移也相应的减小。另外,在静力与地震激励作用下,陡坡路堤滑动面均经过坡脚处。  相似文献   

9.
土质斜坡路基上填方路堤稳定性分析研究   总被引:1,自引:1,他引:0  
方涛  李跃军 《公路工程》2008,33(3):120-124
运用数值计算的方法,获得了当斜坡地基坡度变缓时,路基中最大水平位移、竖向位移、剪应力出现的相对位置基本保持不变,其左侧路肩的水平位移、右侧路肩、坡脚处的竖向位移及路堤右侧坡脚与坡面接触处最大剪应力都将减小。路堤高度H增加时,左侧路肩的水平位移、右侧路肩和坡脚处的竖向位移都将增加。路堤宽度D增加时,左侧路肩的水平位移、右侧路肩和坡脚处的竖向位移都将增加,且变化曲线接近直线。路堤坡度1:变化时,路堤内各点的位移和路堤最大剪应力也随之变化,但变化的幅度非常小。  相似文献   

10.
为控制铁路膨胀土路堤运营期内变形,科学确定膨胀土填料的压实控制标准,对膨胀土路堤不同压实控制方法下的变形量进行了计算,提出铁路膨胀土路堤变形控制方法;结合南昆铁路南宁至百色段增建二线膨胀土路堤试验段工程现场监测结果进行验证。计算结果表明:由湿法重型击实所确定的压实控制指标填筑的膨胀土路堤总变形量较小,最大沉降量为40.5 mm,应采用湿法击实曲线实测93%最大干密度对应的含水率作为膨胀土压实控制含水率;监测结果表明:路堤在将近一年运营期内仅发生沉降变形,最大沉降量为37.0 mm。其膨胀土路堤变形控制方法具有较高可靠性。  相似文献   

11.
雷丹  江鹏锐 《路基工程》2022,(1):98-102
依托四川省某软土路基分级填筑工程(5级),通过在路堤中部剖面布设沉降管和在坡脚布设水平测斜仪的方法,监测分级填筑过程中的路基变形指标;采取实测沉降值和单日最大侧向位移双指标沉降控制方案,拟合验算各级填筑的最佳沉降时间节点;计算标准沉降时间对应的单日最大侧向位移并验证其规范性.结果 表明:软土路基在分级填筑施工过程中会发...  相似文献   

12.
依托云南楚姚高速公路红层软岩高填方路堤工程,建立典型边坡断面模型,对路堤工后长期沉降进行数值模拟。结果表明:路面最大沉降和最大不均匀沉降随压实度的增大呈现出减小的趋势,随着含水率的增加呈现出“先减小后增大”的趋势。因此,适当增大填料的压实度,使用非饱和(最优含水率)状态的填料,可以较好地控制高填方路堤的长期沉降,达到规范要求的质量控制标准。同时,进行高填方区域堆载预压,完成路基早期工后沉降,可减少通车后的长期沉降。堆载高度的选择应综合考虑成本和效益,根据填方高度和现场条件,选择合适的堆载高度。  相似文献   

13.
依托十堰某高等级公路高填方路基工程,采用数值模拟结合现场监测对三种施工方案的陡坡路基变形及稳定性进行研究。结果表明:陡坡高填路基沉降曲线呈“勺型”,路基各点沉降差异较大,采用开挖台阶和路基内部加铺土工格栅的措施对路基沉降量和沉降规律影响微弱;陡坡路基边坡水平位移先增加后减小,水平位移最大值出现在第二级边坡处,开挖台阶对路基边坡水平位移影响较小,采用路基内部加铺土工格栅的措施不仅有效减少路基边坡水平位移,还可增加路基整体稳定性。  相似文献   

14.
与一般路基相比,高填方路基具有填方高度大、较高耐久性和稳定性等特点,具有施工成本低、使用寿命长等优点。为保证道路的稳定和可持续发展,在我国山区公路经过地势低洼地区路段时,往往采用高填方路堤形式。然而,高填方路堤会出现严重的沉降,从而导致路基不稳定,特别是在黄土地区。通过具体工程实例,对黄土地区高填方路堤沉降进行现场监测,对其沉降影响因素及控制技术进行总结分析,为黄土地区高填方路堤建设提供更好的指导。  相似文献   

15.
采用Plaxis程序建立了土工格栅加筋陡坡路堤的有限元分析模型,利用该模型对陡坡路堤边坡坡比、路堤高度、筋带间距及筋带参数等因素对陡坡路堤稳定性的影响机理进行了研究,并对加筋陡坡路堤的极限承载力进行了数值分析。分析结果表明,土工格栅加筋陡坡路堤不但能降低路堤的总竖向沉降量,减小路堤的侧向位移,确保陡坡路堤稳定性,还能显著提高路堤的承载力。  相似文献   

16.
郭瑞  郑波  黎晨 《隧道建设》2019,39(4):601-608
为解决下穿隧道施工对既有高填土路堤的影响问题,依托成贵铁路大方隧道下穿杭瑞高速工程建立三维有限元模型,研究隧道施工对上覆地层位移影响、地表纵向变形特征以及下穿施工对地表各特征位置的主要影响范围。研究结果表明: 1)隧道下穿施工造成高填土路堤层发生显著沉降变形,上覆地层向隧道正中方向产生明显横向位移; 2)大方隧道下穿施工产生的地表纵向变形可划分为微变形区(洞口浅埋沉降区)、强变形区(高填土路堤沉降区)和弱变形区(地表沉降区)3个区域; 3)大方隧道施工分别开挖至洞口、挡墙和公路路面等特征位置时的地表纵向影响范围分别为开挖前方的75、52、65 m,在此影响范围内地层位移变化强烈; 4)拱顶动态沉降曲线均呈反“S”形特征。结合现场监测数据进行对比分析,得出模拟计算值与监测值变化趋势基本吻合,并最后给出相关施工建议措施。  相似文献   

17.
以宜巴高速公路老屋包滑坡高填方路基工程为例,根据不同施工阶段变形监测数据,研究了高速公路工程不同方案对滑坡稳定性的影响。结果表明:老屋包滑坡前缘采取高填方路基工程可有效控制滑坡变形,提高滑坡稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号