首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Transit fares are an effective tool for demand management. Transit agencies can raise revenue or relieve overcrowding via fare increases, but they are always confronted with the possibility of heavy ridership losses. Therefore, the outcome of fare changes should be evaluated before implementation. In this work, a methodology was formulated based on elasticity and exhaustive transit card data, and a network approach was proposed to assess the influence of distance-based fare increases on ridership and revenue. The approach was applied to a fare change plan for Beijing Metro. The price elasticities of demand for Beijing Metro at various fare levels and trip distances were tabulated from a stated preference survey. Trip data recorded by an automatic fare collection system was used alongside the topology of the Beijing Metro system to calculate the shortest path lengths between all station pairs, the origin–destination matrix, and trip lengths. Finally, three fare increase alternatives (high, medium, and low) were evaluated in terms of their impact on ridership and revenue. The results demonstrated that smart card data have great potential with regard to fare change evaluation. According to smart card data for a large transit network, the statistical frequency of trip lengths is more highly concentrated than that of the shortest path length. Moreover, the majority of the total trips have a length of around 15 km, and these are the most sensitive to fare increases. Specific attention should be paid to this characteristic when developing fare change plans to manage demand or raise revenue.  相似文献   

2.
The current state-of-practice for predicting travel times assumes that the speeds along the various roadway segments remain constant over the duration of the trip. This approach produces large prediction errors, especially when the segment speeds vary temporally. In this paper, we develop a data clustering and genetic programming approach for modeling and predicting the expected, lower, and upper bounds of dynamic travel times along freeways. The models obtained from the genetic programming approach are algebraic expressions that provide insights into the spatiotemporal interactions. The use of an algebraic equation also means that the approach is computationally efficient and suitable for real-time applications. Our algorithm is tested on a 37-mile freeway section encompassing several bottlenecks. The prediction error is demonstrated to be significantly lower than that produced by the instantaneous algorithm and the historical average averaged over seven weekdays (p-value <0.0001). Specifically, the proposed algorithm achieves more than a 25% and 76% reduction in the prediction error over the instantaneous and historical average, respectively on congested days. When bagging is used in addition to the genetic programming, the results show that the mean width of the travel time interval is less than 5 min for the 60–80 min trip.  相似文献   

3.
The public transport networks of dense cities such as London serve passengers with widely different travel patterns. In line with the diverse lives of urban dwellers, activities and journeys are combined within days and across days in diverse sequences. From personalized customer information, to improved travel demand models, understanding this type of heterogeneity among transit users is relevant to a number of applications core to public transport agencies’ function. In this study, passenger heterogeneity is investigated based on a longitudinal representation of each user’s multi-week activity sequence derived from smart card data. We propose a methodology leveraging this representation to identify clusters of users with similar activity sequence structure. The methodology is applied to a large sample (n = 33,026) from London’s public transport network, in which each passenger is represented by a continuous 4-week activity sequence. The application reveals 11 clusters, each characterized by a distinct sequence structure. Socio-demographic information available for a small sample of users (n = 1973) is combined to smart card transactions to analyze associations between the identified patterns and demographic attributes including passenger age, occupation, household composition and income, and vehicle ownership. The analysis reveals that significant connections exist between the demographic attributes of users and activity patterns identified exclusively from fare transactions.  相似文献   

4.
Pestel  Eric 《Transportation》2021,48(3):1285-1309
Transportation - In travel demand modelling, trip distance distributions or trip time distributions are used to evaluate how well a model fits with observed sample data. Therefore, the comparison...  相似文献   

5.
This study investigates the important problem of determining a reliable path in a stochastic network with correlated link travel times. First, the distribution of path travel time is quantified by using trip records from GPS probe vehicles. Second, the spatial correlation of link travel time is explicitly considered by using a correlation coefficient matrix, which is incorporated into the α-reliable path problem by Cholesky decomposition. Third, the Lagrangian relaxation based framework is used to handle the α-reliable path problem, by which the intractable problem with a non-linear and non-additive structure can be decomposed into several easy-to-solve problems. Finally, the path-finding performance of this approach is tested on a real-world network. The results show that 15 iterations of calculation can yield a small relative gap between upper and lower bounds of the optimal solution and the average running time is about 5 s for most OD settings. The applicability of α-reliable path finding is validated by a case study.  相似文献   

6.
Data from connected probe vehicles can be critical in estimating road traffic conditions. Unfortunately, current available data is usually sparse due to the low reporting frequency and the low penetration rate of probe vehicles. To help fill the gaps in data, this paper presents an approach for estimating the maximum likelihood trajectory (MLT) of a probe vehicle in between two data updates on arterial roads. A public data feed from transit buses in the city of San Francisco is used as an example data source. Low frequency updates (at every 200 m or 90 s) leaves much to be inferred. We first estimate travel time statistics along the road and queue patterns at intersections from historical probe data. The path is divided into short segments, and an Expectation Maximization (EM) algorithm is proposed for allocating travel time statistics to each segment. Then the trajectory with the maximum likelihood is generated based on segment travel time statistics. The results are compared with high frequency ground truth data in multiple scenarios, which demonstrate the effectiveness of the proposed approach, in estimating both the trajectory while moving and the stop positions and durations at intersections.  相似文献   

7.
Urban passenger transport significantly contributes to global greenhouse gas emissions, especially in developing countries owing to the rapid motorization, thus making it an important target for carbon reduction. This article established a method to estimate and analyze carbon emission from urban passenger transport including cars, rail transit, taxis and buses. The scope of research was defined based on car registration area, transport types and modes, the stages of rail transit energy consumption. The data availability and gathering were fully illustrated. A city level emission model for the aforementioned four modes of passenger transport was formulated, and parameters including emission factor of electricity and fuel efficiency were tailored according to local situations such as energy structure and field survey. The results reveal that the emission from Beijing’s urban passenger transport in 2012 stood at 15 million tonnes of CO2, of which 75.5% was from cars, whereas car trip sharing constitutes only 42.5% of the total residential trips. Bus travel, yielding 28.6 g CO2, is the most efficient mode of transport under the current situations in terms of per passenger kilometer (PKM) emission, whereas car or taxi trips emit more than 5 times that of bus trips. Although a decrease trend appears, Beijing still has potential for further carbon reduction in passenger transport field in contrast to other cities in developed countries. Development of rail transit and further limitation on cars could assist in reducing 4.39 million tonnes CO2 emission.  相似文献   

8.
Rail and sea voyage journeys to Cyprus from a variety of origins are constructed to derive the travel emissions and travel time per person to compare popular aviation routes. The hypothetical ‘slow travel’ routes are approximately eight to ten times longer than flying. Emissions are lower from certain origins by about 100 kg CO2 per person per round trip under reasonably high occupancy conditions when compared to current direct air services. Emissions from the sea voyages are derived from a sample of 162 marine vessels using the energy efficiency design index for European ships running at 20 knots.  相似文献   

9.
This paper presents an alternative planning framework to model and forecast network traffic for planning applications in small communities, where limited resources debilitate the development and applications of the conventional four-step travel demand forecasting model. The core idea is to use the Path Flow Estimator (PFE) to estimate current and forecast future traffic demand while taking into account of various field and planning data as modeling constraints. Specifically, two versions of PFE are developed: a base year PFE for estimating the current network traffic conditions using field data and planning data, if available, and a future year PFE for predicting future network traffic conditions using forecast planning data and the estimated base year origin–destination trip table as constraints. In the absence of travel survey data, the proposed method uses similar data (traffic counts and land use data) as a four-step model for model development and calibration. Since the Institute of Transportation Engineers (ITE) trip generation rates and Highway Capacity Manual (HCM) are both utilized in the modeling process, the analysis scope and results are consistent with those of common traffic impact studies and other short-range, localized transportation improvement programs. Solution algorithms are also developed to solve the two PFE models and integrated into a GIS-based software called Visual PFE. For proof of concept, two case studies in northern California are performed to demonstrate how the tool can be used in practice. The first case study is a small community of St. Helena, where the city’s planning department has neither an existing travel demand model nor the budget for developing a full four-step model. The second case study is in the city of Eureka, where there is a four-step model developed for the Humboldt County that can be used for comparison. The results show that the proposed approach is applicable for small communities with limited resources.  相似文献   

10.
This research identifies key variables that influence fuel consumption that might be improved through eco-driving training programs under three circumstances that have been scarcely studied before: (a) heavy- and medium-duty truck fleets, (b) long-distance freight transport, and (c) the Latin American region. Based on statistical analyses that include multivariate regression of operational variables on fuel consumption, the impacts of an eco-driving training campaign were measured by comparing ex ante and ex post data. Operational variables are grouped into driving errors, trip conditions, driver behavior, driver profile, and vehicle attributes.The methodology is applied in a freight fleet with nationwide transport operations located in Colombia, where the steepness of its roads plays an important role in fuel consumption. The fleet, composed of 18 trucks, is equipped with state-of-the-art real-time data logger systems. During four months, 517 trips traveling a total distance of 292,512 km and carrying a total of 10,034 tons were analyzed.The results show a baseline average fuel consumption (FC) of 1.716 liters per ton-100 km. A different logistics performance indicator, which measures FC in liters per ton transported each 100 km, shows an average of 3.115. After the eco-driving campaign, reductions of 6.8% and 5.5% were obtained. Drivers’ experience, driving errors, average speed, and weight-capacity ratio, among others, were found to be highly relevant to FC. In particular, driving errors such as acceleration, braking and speed excesses are the most sensitive to eco-driving training, showing reductions of up to 96% on the average number of events per trip.  相似文献   

11.
Transit ridership is usually sensitive to fares, travel times, waiting times, and access times, among other factors. Therefore, the elasticities of demand with respect to such factors should be considered in modeling bus transit services and must be considered when maximizing net benefits (i.e. “system welfare” = consumer surplus + producer surplus) rather just minimizing costs. In this paper welfare is maximized with elastic demand relations for both conventional (fixed route) and flexible-route services in systems with multiple dissimilar regions and periods. As maximum welfare formulations are usually too complex for exact solutions, they have only been used in a few studies focused on conventional transit services. This limitation is overcome here for both conventional and flexible transit services by using a Real Coded Genetic Algorithm to solve such mixed integer nonlinear welfare maximization problems with constraints on capacities and subsidies. The optimized variables include service type, zone sizes, headways and fares. We also determine the maximum welfare threshold between optimized conventional and flexible services) and explore the effects of subsidies. The proposed planning models should be useful in selecting the service type and optimizing other service characteristics based on local geographic characteristics and financial constraints.  相似文献   

12.
Carsharing programs that operate as short-term vehicle rentals (often for one-way trips before ending the rental) like Car2Go and ZipCar have quickly expanded, with the number of US users doubling every 1–2 years over the past decade. Such programs seek to shift personal transportation choices from an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles will address many current carsharing barriers, including users’ travel to access available vehicles.This work describes the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use. The model operates by generating trips throughout a grid-based urban area, with each trip assigned an origin, destination and departure time, to mimic realistic travel profiles. A preliminary model run estimates the SAV fleet size required to reasonably service all trips, also using a variety of vehicle relocation strategies that seek to minimize future traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying travelers from one destination to the next. During each 5-min interval, some unused SAVs relocate, attempting to shorten wait times for next-period travelers.Case studies vary trip generation rates, trip distribution patterns, network congestion levels, service area size, vehicle relocation strategies, and fleet size. Preliminary results indicate that each SAV can replace around eleven conventional vehicles, but adds up to 10% more travel distance than comparable non-SAV trips, resulting in overall beneficial emissions impacts, once fleet-efficiency changes and embodied versus in-use emissions are assessed.  相似文献   

13.
This paper presents a system of hierarchical rule-based models of trip generation and modal split. Travel attributes, like trip counts for different transportation modes and commute distance, are among the modeled variables. The proposed framework could be considered as an alternative for several modules of the traditional travel demand modeling approach, while providing travel attributes at the highly disaggregate level that can be also used in activity-based micro-simulation modeling systems. Nonetheless, the modeling framework of this study is not considered as a substitute for activity-based models. The explanatory variables set ranges from socio-economic and demographic attributes of the household to the built environment characteristics of the household residential location. Another important contribution of the study is a framework in which travel attributes are modeled in conjunction with each other and the interdependencies among them are postulated through a hierarchical system of models. All the models are developed using rule-based decision tree method. Moreover, the models developed in this study present a useful improvement in increasing the practicality and accuracy of the rule-based travel data simulation models.  相似文献   

14.
In this paper, the concept of reserve capacity has been extended to zone level to measure the land-use development potentiality of each trip generation zone. Bi-level programing models are proposed to determine the signal setting of individual intersections for maximizing possible increase in total travel demand and the corresponding reserve capacity for each zone. The change of the origin–destination pattern with the variation of upper level decision variables is presented through the combined distribution/assignment model under user equilibrium conditions. Both singly constrained and doubly constrained combined models are considered for different trip purposes and data information. Furthermore, we have introduced the continuous network design problem by increasing road capacity and examined its effect on the land-use development potentiality of trip generation zone. A numerical example is presented to illustrate the application of the models and how a genetic algorithm is applied to solve the problem.  相似文献   

15.
A leading cause of air pollution in many urban regions is mobile source emissions that are largely attributable to household vehicle travel. While household travel patterns have been previously related with land use in the literature (Crane, R., 1996. Journal of the American Planning Association 62 (1, Winter); Cervero, R. and Kockelman, C., 1997. Transportation Research Part D 2 (3), 199–219), little work has been conducted that effectively extends this relationship to vehicle emissions. This paper describes a methodology for quantifying relationships between land use, travel choices, and vehicle emissions within the Seattle, Washington region. Our analysis incorporates land use measures of density and mix which affect the proximity of trip origins to destinations; a measure of connectivity which impacts the directness and completeness of pedestrian and motorized linkages; vehicle trip generation by operating mode; vehicle miles/h of travel and speed; and estimated household vehicle emissions of nitrogen oxides, volatile organic compounds, and carbon monoxide. The data used for this project consists of the Puget Sound Transportation Panel Travel Survey, the 1990 US Census, employment density data from the Washington State Employment Security Office, and information on Seattle’s vehicle fleet mix and climatological attributes provided by the Washington State Department of Ecology. Analyses are based on a cross-sectional research design in which comparisons are made of variations in household travel demand and emissions across alternative urban form typologies. Base emission rates from MOBILE5a and separate engine start rates are used to calculate total vehicle emissions in grams accounting for fleet characteristics and other inputs reflecting adopted transportation control measures. Emissions per trip are based on the network distance of each trip, average travel speed, and a multi-stage engine operating mode (cold start, hot start, and stabilized) function.  相似文献   

16.
Road transportation is one of the major sources of greenhouse gas emissions. To reduce energy consumption and alleviate this environmental problem, this study aims to develop an eco-routing algorithm for navigation systems. Considering that both fuel consumption and travel time are important factors when planning a trip, the proposed routing algorithm finds a path that consumes the minimum amount of gasoline while ensuring that the travel time satisfies a specified travel time budget and an on-time arrival probability. We first develop link-based fuel consumption models based on vehicle dynamics, and then the Lagrangian-relaxation-based heuristic approach is proposed to efficiently solve this NP-hard problem. The performance of the proposed eco-routing strategy is verified in a large-scale network with real travel time and fuel consumption data. Specifically, a sensitivity analysis of fuel consumption reduction for travel demand and travel time buffer is discussed in our simulation study.  相似文献   

17.
Travel demand analyses are useful for transportation planning and policy development in a study area. However, travel demand modeling faces two obstacles. First, standard practice solves the four travel components (trip generation, trip distribution, modal split and network assignment) in a sequential manner. This can result in inconsistencies and non-convergence. Second, the data required are often complex and difficult to manage. Recent advances in formal methods for network equilibrium-based travel demand modeling and computational platforms for spatial data handling can overcome these obstacles. In this paper we report on the development of a prototype geographic information system (GIS) design to support network equilibrium-based travel demand models. The GIS design has several key features, including: (i) realistic representation of the multimodal transportation network, (ii) increased likelihood of database integrity after updates, (iii) effective user interfaces, and (iv) efficient implementation of network equilibrium solution algorithms.  相似文献   

18.
Electric bicycles and motorcycles have emerged as a possible way of improving the transportation system sustainability. This work’s aim was to quantify the energy consumption, the trip travel and the driving dynamics on specific routes in Lisbon, Portugal. Six electric and conventional bicycles and motorcycles were monitored, and a methodology to quantify the power required in each driving second was developed: Motorcycle and Bicycle Specific Power (MSP and BSP respectively). MSP and BSP allows characterizing energy consumption rates based on on-road data and to define real-world operation patterns (driving power distribution), as well as to benchmark the different propulsion technologies under the same baseline of specific power. For negative MSP and BSP modes, the conventional and the electric motorcycles and bicycles demonstrated a similar pattern. However, their behavior was different for positive modes, since electric technologies allow reaching higher power conditions. The methodology developed estimates accurately the energy consumption (average deviation of −0.19 ± 6.76% for motorcycles and of 1.41 ± 8.91% for bicycles). The MSP and BSP methodologies were tested in 2 Lisbon routes. For the electric motorcycle an increase in trip time (+36%) was observed when compared to the conventional one, while for the electric bicycle a 9.5% decrease was verified when compared to the conventional one. The Tank-to-Wheel (TTW) energy consumption for motorcycles was reduced by 61% when shifting to electric mobility, while a 30% Well-to-Wheel (WTW) reduction is obtained. For the electric bicycles, an additional energy use is quantified due to the battery electricity consumption.  相似文献   

19.
This article deals with the Transportation Study currently nearing completion in Dublin. A feature of this Study was the use of simplified data collection and modelling techniques. Beginning with a brief outline of the background to the transportation problem in Dublin, the article goes on to outline the objectives of the Study and the methods by which these objectives were fulfilled. These methods involved the taking of detailed inventories of Dublin's travel patterns, of its land uses, population and employment, and of its road and public transport systems. Mathematical models were then developed and modified until they could simulate the existing travel patterns to an acceptable degree of accuracy. These models covered the Study's trip generation, modal split, trip distribution and trip assignment stages, and the forms taken by the models are dealt with in the article. The article ends with a summary of the main recommendations of the Dublin Transportation Study.  相似文献   

20.
This paper addresses the two problems of flow and density reconstruction in Road Transportation Networks with heterogeneous information sources and cost effective sensor placement. Following a standard modeling approach, the network is partitioned in cells, whose vehicle densities change dynamically in time according to first order conservation laws. The first problem is to estimate flow and the density of vehicles using as sources of information standard fixed sensors, precise but expensive, and Floating Car Data, less precise due to low penetration rates, but already available on most of main roads. A data fusion algorithm is proposed to merge the two sources of information to estimate the network state. The second problem is to place sensors by trading off between cost and performance. A relaxation of the problem, based on the concept of Virtual Variances, is proposed and solved using convex optimization tools. The efficiency of the designed strategies is shown on a regular grid and in the real world scenario of Rocade Sud in Grenoble, France, a ring road 10.5 km long.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号