首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 578 毫秒
1.
利用乙酰丙酮铁在空气中的低温热分解反应,制备了Fe3O4,γ-Fe2O3纳米微粒.采用X射线衍射(XRD)、透射电子显微镜(TEM)、比表面积法(BET)对制得的产物进行粒径及形貌表征.结果表明:Fe3O4一次颗粒粒径为16nm左右;γ-Fe2O3一次颗粒粒径约为20nm,颗粒间排列紧密,二次颗粒呈链状,有形成一个封闭空间的趋势.  相似文献   

2.
利用乙酰丙酮铁在空气中的低温热分解反应,制备了Fe3O4,γ-Fe2O3纳米微粒.采用X射线衍射(XRD)、透射电子显微镜(TEM)、比表面积法(BET)对制得的产物进行粒径及形貌表征.结果表明:Fe3O4一次颗粒粒径为16 nm左右;γ- Fe2O3一次颗粒粒径约为20 nm,颗粒间排列紧密,二次颗粒呈链状,有形成一个封闭空间的趋势.  相似文献   

3.
在超声波作用下,使用均匀沉淀法制备了纳米Y2O3:Eu3+荧光粉,考察反应物配比、溶液pH值、反应时间、煅烧温度等制备条件对产物品粒尺寸及产率的影响.利用X射线粉末衍射(XRD)、等离子体原子发射光谱(ICP-AES)、透射电镜(TEM)和荧光光谱等测试手段表征产物,结果表明,该法制得的纳米Y2O3:Eu3+荧光粉颗粒为球形,粒度分布均匀,平均粒径约为30 nm.与微米晶相比,该纳米晶的激发光谱发生明显红移,电荷迁移态最大值(CTS)红移12 nm,发射光谱中发射主峰蓝移8 nm.  相似文献   

4.
采用自蔓延燃烧溶胶.凝胶法制备纳米复合粉体CaFe2O4/α-Fe2O3,利用热分析(TG—DTA)和X射线衍射(XRD)方法对其晶体结构进行分析.研究结果表明:在800℃焙烧温度下可形成纳米复合粉体CaFe2O3/α-Fe2O3,微粒粒径达60~70nm;随着温度的升高,微粒的结晶度增大.  相似文献   

5.
在超声波作用下,使用均匀沉淀法制备了纳米Y2O3∶Eu3+荧光粉,考察反应物配比、溶液pH值、反应时间、煅烧温度等制备条件对产物晶粒尺寸及产率的影响.利用X射线粉末衍射(XRD)、等离子体原子发射光谱(ICP-AES)、透射电镜(TEM)和荧光光谱等测试手段表征产物,结果表明,该法制得的纳米Y2O3∶Eu3+荧光粉颗粒为球形,粒度分布均匀,平均粒径约为30 nm.与微米晶相比,该纳米晶的激发光谱发生明显红移,电荷迁移态最大值(CTS)红移12 nm,发射光谱中发射主峰蓝移8 nm.  相似文献   

6.
应用静电纺丝法制备了Zn(Ac)/PVP复合纳米纤维,经650℃煅烧后得到直径为95 nm的ZnO纳米纤维.分别采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对ZnO纳米纤维的表面形貌和晶体结构进行了表征.结果表明:ZnO纳米纤维由粒径约30~50nm的微粒组成,为粗糙多孔的网状结构.同时,研究了ZnO纳米纤维传感器的气敏特性.测试结果表明:该传感器在300℃时对低浓度(10 ppm)的乙醇具有高灵敏性和很好的选择性.另外,讨论了ZnO纳米纤维的气敏机制.  相似文献   

7.
采用低温球磨结合真空热压烧结技术制备了块体纳米Al晶体材料,并加入硬质Al2O3颗粒来进一步提高该材料的强度和硬度.利用X射线衍射,透射电镜对材料的微观组织进行了分析和观察,并对所制备块体纳米材料的密度、显微硬度和拉伸性能进行了测定.研究结果表明:当球磨时间从8h增加到14h时,纳米Al粉末颗粒的晶粒尺寸从55nm减小到43nm,微观应变从0.0272%增至0.0759%.经致密化处理后,该材料的晶粒尺寸从115nm减小到71nm.经热挤压后的块体纳米Al及Al—Al2O3晶体材料的相对密度都达99.4%以上,其最高显微维氏硬度分别为1.02和1.22GPa,比粗晶Al的显微维氏硬度分别提高了3和3.6倍.块体纳米Al的最高屈服强度和抗拉强度分别为165和243MPa,比粗晶1050纯Al的屈服强度和抗拉强度分别提高了7.5和3.2倍.当平均晶粒尺寸小于223nm时,得到块体纳米Al材料的屈服强度与晶粒尺寸之间的关系为σ=71.8+1.8D^-1/2.  相似文献   

8.
利用深冷球磨及真空热压技术制备块体Al及Al-Al2O3纳米晶体材料,采用X射线衍射测定晶粒尺寸,利用扫描电镜对材料的微观组织进行观察,并测定了所制备材料的显微硬度和抗拉性能.研究结果表明:经深冷球磨14 h后,Al粉末颗粒的平均晶粒尺寸由50μm变化到43 nm.块体纳米Al晶体材料的显微硬度随烧结温度升高而下降,加入纳米Al2O3颗粒后显微硬度约为粗晶纯Al显微硬度的4倍;块体纳米Al晶体材料的抗拉强度极限σb为265 MPa,加入纳米Al2O3颗粒后的抗拉强度为322 MPa,比纳米纯Al晶体材料提高了22%.  相似文献   

9.
利用深冷球磨及真空热压技术制备块体Al及Al-Al2O3纳米晶体材料,采用X射线衍射测定晶粒尺寸,利用扫描电镜对材料的微观组织进行观察,并测定了所制备材料的显微硬度和抗拉性能.研究结果表明:经深冷球磨14 h后,Al粉末颗粒的平均晶粒尺寸由50 μm变化到43 nm.块体纳米Al晶体材料的显微硬度随烧结温度升高而下降,加入纳米Al2O3颗粒后显微硬度约为粗晶纯Al显微硬度的4倍;块体纳米Al晶体材料的抗拉强度极限σb为265 MPa,加入纳米Al2O3颗粒后的抗拉强度为322 MPa,比纳米纯Al晶体材料提高了22%.  相似文献   

10.
低温球磨制备块体纳米Al晶体材料的组织与性能   总被引:2,自引:0,他引:2  
采用低温球磨结合真空热压烧结技术制备了块体纳米Al晶体材料,并加入硬质Al2O3颗粒来进一步提高该材料的强度和硬度.利用X射线衍射,透射电镜对材料的微观组织进行了分析和观察,并对所制备块体纳米材料的密度、显微硬度和拉伸性能进行了测定.研究结果表明:当球磨时间从8h增加到14h时,纳米Al粉末颗粒的晶粒尺寸从55nm减小到43nm,微观应变从0.0272%增至0.0759%.经致密化处理后,该材料的晶粒尺寸从115nm减小到71nm.经热挤压后的块体纳米Al及Al—Al2O3晶体材料的相对密度都达99.4%以上,其最高显微维氏硬度分别为1.02和1.22GPa,比粗晶Al的显微维氏硬度分别提高了3和3.6倍.块体纳米Al的最高屈服强度和抗拉强度分别为165和243MPa,比粗晶1050纯Al的屈服强度和抗拉强度分别提高了7.5和3.2倍.当平均晶粒尺寸小于223nm时,得到块体纳米Al材料的屈服强度与晶粒尺寸之间的关系为σ=71.8+1.8D^-1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号