首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a heavily congested metro line, unexpected disturbances often occur to cause the delay of the traveling passengers, infeasibility of the current timetable and reduction of the operational efficiency. Due to the uncertain and dynamic characteristics of passenger demands, the commonly used method to recover from disturbances in practice is to change the timetable and rolling stock manually based on the experiences and professional judgements. In this paper, we develop a stochastic programming model for metro train rescheduling problem in order to jointly reduce the time delay of affected passengers, their total traveling time and operational costs of trains. To capture the complexity of passenger traveling characteristics, the arriving ratio of passengers at each station is modeled as a non-homogeneous poisson distribution, in which the intensity function is treated as time-varying origin-to-destination passenger demand matrices. By considering the number of on-board passengers, the total energy usage is modeled as the difference between the tractive energy consumption and the regenerative energy. Then, we design an approximate dynamic programming based algorithm to solve the proposed model, which can obtain a high-quality solution in a short time. Finally, numerical examples with real-world data sets are implemented to verify the effectiveness and robustness of the proposed approaches.  相似文献   

2.
Energy efficient techniques are receiving increasing attention because of rising energy prices and environmental concerns. Railways, along with other transport modes, are facing increasing pressure to provide more intelligent and efficient power management strategies.This paper presents an integrated optimization method for metro operation to minimize whole day substation energy consumption by calculating the most appropriate train trajectory (driving speed profile) and timetable configuration. A train trajectory optimization algorithm and timetable optimization algorithm are developed specifically for the study. The train operation performance is affected by a number of different systems that are closely interlinked. Therefore, an integrated optimization process is introduced to obtain the optimal results accurately and efficiently.The results show that, by using the optimal train trajectory and timetable, the substation energy consumption and load can be significantly reduced, thereby improving the system performance and stability. This also has the effect of reducing substation investment costs for new metros.  相似文献   

3.
High-speed railway (HSR) systems have been developing rapidly in China and various other countries throughout the past decade; as a result, the question of how to efficiently operate such large-scale systems is posing a new challenge to the railway industry. A high-quality train timetable should take full advantage of the system’s capacity to meet transportation demands. This paper presents a mathematical model for optimizing a train timetable for an HSR system. We propose an innovative methodology using a column-generation-based heuristic algorithm to simultaneously account for both passenger service demands and train scheduling. First, we transform a mathematical model into a simple linear programming problem using a Lagrangian relaxation method. Second, we search for the optimal solution by updating the restricted master problem (RMP) and the sub-problems in an iterative process using the column-generation-based algorithm. Finally, we consider the Beijing–Shanghai HSR line as a real-world application of the methodology; the results show that the optimization model and algorithm can improve the defined profit function by approximately 30% and increase the line capacity by approximately 27%. This methodology has the potential to improve the service level and capacity of HSR lines with no additional high-cost capital investment (e.g., the addition of new tracks, bridges and tunnels on the mainline and/or at stations).  相似文献   

4.
Regenerative braking is an energy recovery mechanism that converts the kinetic energy during braking into electricity, also known as regenerative energy. In general, most of the regenerative energy is transmitted backward along the pantograph and fed back into the overhead contact line. To reduce the trains’ energy consumption, this paper develops a scheduling approach to coordinate the arrivals and departures of all trains located in the same electricity supply interval so that the energy regenerated from braking trains can be more effectively utilized to accelerate trains. Firstly, we formulate an integer programming model with real-world speed profiles to minimize the trains’ energy consumption with dwell time control. Secondly, we design a genetic algorithm and an allocation algorithm to find a good solution. Finally, we present numerical examples based on the real-life operation data from the Beijing Metro Yizhuang Line in Beijing, China. The results show that the proposed scheduling approach can reduce energy consumption by 6.97% and save about 1,054,388 CNY (or 169,223 USD) each year in comparison with the current timetable. Compared to the cooperative scheduling (CS) approach, the proposed scheduling approach can improve the utilization of regenerative energy by 36.16% and reduce the total energy consumption by 4.28%.  相似文献   

5.
This paper addresses the problem of constructing periodic timetables for train operations. We use a mathematical model consisting of periodic time window constraints by means of which arrival and departure times can be related pairwise on a clock, rather than on a linear time axis. Constructing a timetable, then, means solving a set of such constraints. This problem is known to be hard, i.e. it is NP-complete. We describe a new algorithm to solve the problem based on constraint generation and work out a real-life example. It appears that, for problem instances of modest, yet non-trivial, size, the algorithm performs very well, which opens a way to thorough performance analysis of railway systems by studying a large number of possible future timetables.  相似文献   

6.
To improve the service quality of the railway system (e.g., punctuality and travel times) and to enhance the robust timetabling methods further, this paper proposes an integrated two-stage approach to consider the recovery-to-optimality robustness into the optimized timetable design without predefined structure information (defined as flexible structure) such as initial departure times, overtaking stations, train order and buffer time. The first-stage timetabling model performs an iterative adjustment of all departure and arrival times to generate an optimal timetable with balanced efficiency and recovery-to-optimality robustness. The second-stage dispatching model evaluates the recovery-to-optimality robustness by simulating how each timetable generated from the first-stage could recover under a set of restricted scenarios of disturbances using the proposed dispatching algorithm. The concept of recovery-to-optimality is examined carefully for each timetable by selecting a set of optimally refined dispatching schedules with minimum recovery cost under each scenario of disturbance. The robustness evaluation process enables an updating of the timetable by using the generated dispatching schedules. Case studies were conducted in a railway corridor as a special case of a simple railway network to verify the effectiveness of the proposed approach. The results show that the proposed approach can effectively attain a good trade-off between the timetable efficiency and obtainable robustness for practical applications.  相似文献   

7.
Compared with most optimization methods for capacity evaluation, integrating capacity analysis with timetabling can reveal the types of train line plans and operating rules that have a positive influence on improving capacity utilization as well as yielding more accurate analyses. For most capacity analyses and cyclic timetabling methods, the cycle time is a constant (e.g., one or two hours). In this paper, we propose a minimum cycle time calculation (MCTC) model based on the periodic event scheduling problem (PESP) for a given train line plan, which is promising for macroscopic train timetabling and capacity analysis. In accordance with train operating rules, a non-collision constraint and a series of flexible overtaking constraints (FOCs) are constructed based on variations of the original binary variables in the PESP. Because of the complexity of the PESP, an iterative approximation (IA) method for integration with the CPLEX solver is proposed. Finally, two hypothetical cases are considered to analyze railway capacity, and several influencing factors are studied, including train regularity, train speed, line plan specifications (train stops), overtaking and train heterogeneity. The MCTC model and IA method are used to test a real-world case involving the timetable of the Beijing–Shanghai high-speed railway in China.  相似文献   

8.
This paper proposes a bi-level model to solve the timetable design problem for an urban rail line. The upper level model aims at determining the headways between trains to minimize total passenger cost, which includes not only the usual perceived travel time cost, but also penalties during travel. With the headways given by the upper level model, passengers’ arrival times at their origin stops are determined by the lower level model, in which the cost-minimizing behavior of each passenger is taken into account. To make the model more realistic, explicit capacity constraints of individual trains are considered. With these constraints, passengers cannot board a full train, but wait in queues for the next coming train. A two-stage genetic algorithm incorporating the method of successive averages is introduced to solve the bi-level model. Two hypothetical examples and a real world case are employed to evaluate the effectiveness of the proposed bi-level model and algorithm. Results show that the bi-level model performs well in reducing total passenger cost, especially in reducing waiting time cost and penalties. And the section loading-rates of trains in the optimized timetable are more balanced than the even-headway timetable. The sensitivity analyses show that passenger’s desired arrival time interval at destination and crowding penalty factor have a high influence on the optimal solution. And with the dispersing of passengers' desired arrival time intervals or the increase of crowding penalty factor, the section loading-rates of trains become more balanced.  相似文献   

9.
In the urban subway transportation system, passengers may have to make at least one transfer traveling from their origin to destination. This paper proposes a timetable synchronization optimization model to optimize passengers’ waiting time while limiting the waiting time equitably over all transfer station in an urban subway network. The model aims to improve the worst transfer by adjusting the departure time, running time, the dwelling time and the headways for all directions in the subway network. In order to facilitate solution, we develop a binary variables substitute method to deal with the binary variables. Genetic algorithm is applied to solve the problem for its practicality and generality. Finally, the suggested model is applied to Beijing urban subway network and several performance indicators are presented to verify the efficiency of suggested model. Results indicate that proposed timetable synchronization optimization model can be used to improve the network performance for transfer passengers significantly.  相似文献   

10.
A new timetable must be calculated in real-time when train operations are perturbed. Although energy consumption is becoming a central issue both from the environmental and economic perspective, it is usually neglected in the timetable recalculation. In this paper, we formalize the real-time Energy Consumption Minimization Problem (rtECMP). It finds in real-time the driving regime combination for each train that minimizes energy consumption, respecting given routing and precedences between trains. In the possible driving regime combinations, train routes are split in subsections for which one of the regimes resulting from the Pontryagin’s Maximum Principle is to be chosen. We model the trade-off between minimizing energy consumption and total delay by considering as objective function their weighted sum. We propose an algorithm to solve the rtECMP, based on the solution of a mixed-integer linear programming model. We test this algorithm on the Pierrefitte-Gonesse control area, which is a critical area in France with dense mixed traffic. The results show that the problem is tractable and an optimal solution of the model tackled can often be found in real-time for most instances.  相似文献   

11.
A simplified simulation model for the operational analysis of a rail rapid transit train is presented. The model simulates the movement of a train along a route, and develops the relationships of time—distance, time—speed and distance—speed. The inputs to the model are the profile of speed limits and the dynamic characteristics of the train. Without the information on the track geometry and tractive effort, the model determines the speed of the train at a location based on the previous and future speed limits relative to the location. It was found that the model can fairly accurately simulate the relationship between travel time and distance. A comparison of the train travel times between the actual and simulated runs is presented. Because of the simplicity of input and calculation method, the model can be a useful tool for the “desk-top” analysis of frequently occurring planning problems of a commuter rail or rail rapid transit line, such as the impacts of changes in speed limits, station locations, station stopping policy, addition/elimination of stations, and types of rail cars.  相似文献   

12.
We analyze the train types handled at a section station and the factors affecting the scheduling of the arrival–departure track operation, using the following conditions as our optimization goals: operating the arrival–departure tracks in accordance with a fixed operation scheme, and reducing the influence which the departing–receiving operations impose on shunting operations. We establish a 0–1 integer programming model for formulating a track operation plan. By applying modern sequencing theory, this is transformed into a fixed sequencing model of special parallel machines. We then design a heuristic algorithm to solve the model. Finally, the example of Yiyang railway station is used to verify the advantages of the model and the algorithm. A better operation plan is obtained using MATLAB 7.0 by applying the model and the algorithm provided in the paper, indicating the superiority of our study’s approach.  相似文献   

13.
This paper investigates an issue for optimizing synchronized timetable for community shuttles linked with metro service. Considering a passenger arrival distribution, the problem is formulated to optimize timetables for multiple community shuttle routes, with the objective of minimizing passenger’s schedule delay cost and transfer cost. Two constraints, i.e., vehicle capacity and fleet size, are modeled in this paper. The first constraint is treated as soft, and the latter one is handled by a proposed timetable generating method. Two algorithms are employed to solve the problem, i.e., a genetic algorithm (GA) and a Frank–Wolfe algorithm combined with a heuristic algorithm of shifting departure times (FW-SDT). FW-SDT is an algorithm specially designed for this problem. The simulated and real-life examples confirm the feasibility of the two algorithms, and demonstrate that FW-SDT outperforms GA in both accuracy and effectiveness.  相似文献   

14.
Timetable design is crucial to the metro service reliability. A straightforward and commonly adopted strategy in daily operation is a peak/off-peak-based schedule. However, such a strategy may fail to meet dynamic temporal passenger demand, resulting in long passenger waiting time at platforms and over-crowding in trains. Thanks to the emergence of smart card-based automated fare collection systems, we can now better quantify spatial–temporal demand on a microscopic level. In this paper, we formulate three optimization models to design demand-sensitive timetables by demonstrating train operation using equivalent time (interval). The first model aims at making the timetable more dynamic; the second model is an extension allowing for capacity constraints. The third model aims at designing a capacitated demand-sensitive peak/off-peak timetable. We assessed the performance of these three models and conducted sensitivity analyzes on different parameters on a metro line in Singapore, finding that dynamical timetable built with capacity constraints is most advantageous. Finally, we conclude our study and discuss the implications of the three models: the capacitated model provides a timetable which shows best performance under fixed capacity constraints, while the uncapacitated model may offer optimal temporal train configuration. Although we imposed capacity constraints when designing the optimal peak/off-peak timetable, its performance is not as good as models with dynamical headways. However, it shows advantages such as being easier to operate and more understandable to the passengers.  相似文献   

15.
The train trajectory optimization problem aims at finding the optimal speed profiles and control regimes for a safe, punctual, comfortable, and energy-efficient train operation. This paper studies the train trajectory optimization problem with consideration of general operational constraints as well as signalling constraints. Operational constraints refer to time and speed restrictions from the actual timetable, while signalling constraints refer to the influences of signal aspects and automatic train protection on train operation. A railway timetable provides each train with a train path envelope, which consists of a set of positions on the route with a specified target time and speed point or window. The train trajectory optimization problem is formulated as a multiple-phase optimal control model and solved by a pseudospectral method. This model is able to capture varying gradients and speed limits, as well as time and speed constraints from the train path envelope. Train trajectory calculation methods under delay and no-delay situations are discussed. When the train follows the planned timetable, the train trajectory calculation aims at minimizing energy consumption, whereas in the case of delays the train trajectory is re-calculated to track the possibly adjusted timetable with the aim of minimizing delays as well as energy consumption. Moreover, the train operation could be affected by yellow or red signals, which is taken into account in the train speed regulation. For this purpose, two optimization policies are developed with either limited or full information of the train ahead. A local signal response policy ensures that the train makes correct and quick responses to different signalling aspects, while a global green wave policy aims at avoiding yellow signals and thus proceed with all green signals. The method is applied in a case study of two successive trains running on a corridor with various delays showing the benefit of accurate predictive information of the leading train on energy consumption and train delay of the following train.  相似文献   

16.
The train operational plan (TOP) plays a crucial role in the efficient and effective operation of an urban rail system. We optimize the train operational plan in a special network layout, an urban rail corridor with one terminal yard, by decomposing it into two sub-problems, i.e., the train departure profile optimization and the rolling stock circulation optimization. The first sub-problem synthetically optimizes frequency setting, timetabling and the rolling stock circulation at the terminal without a yard. The maximum headway function is generated to ensure the service of the train operational plan without considering travel demand, then we present a model to minimize the number of train trips, and design a heuristic algorithm to maximize the train headway. On the basis of a given timetable, the rolling stock circulation optimization only involves the terminal with a yard. We propose a model to minimize the number of trains and yard–station runs, and an algorithm to find the optimal assignment of train-trip pair connections is designed. The computational complexities of the two algorithms are both linear. Finally, a real case study shows that the train operational plan developed by our approach enables a better match of train headway and travel demand, and reduces the operational cost while satisfying the requirement of the level of service.  相似文献   

17.
Despite some substantial limitations in the simulation of low-frequency scheduled services, frequency-based (FB) assignment models are by far the most widely used in practice. They are less expensive to build and less demanding from the computational viewpoint with respect to schedule-based (SB) models, as they require neither explicit simulation of the timetable (on the supply side), nor segmentation of OD matrices by desired departure/arrival time (on the demand side).The objective of this paper is to assess to what extent the lack of modeling capabilities of FB models is acceptable, and, on the other hand, the cases in which such approximations are substantial and more detailed SB models are needed. This is a first attempt to shed light on the trade-off between (frequency-based) model inaccuracy and (scheduled-based) model development costs in the field of long-distance (e.g. High-speed Rail, HSR) service modeling.To this aim, we considered two modeling specifications estimated using mixed Revealed Preferences (RP) and Stated Preferences (SP) surveys and validated with respect to the same case study. Starting from an observed (baseline) scenario, we artificially altered the demand distributions (uniform vs. time-varying demand) and the supply configuration (i.e. train departure times), and analyzed the differences in modal split estimates and flows on individual trains, using the two different model specifications.It resulted that when the demand distribution is uniform within the period of analysis, such differences are significant only when departure times of trains are strongly unevenly spaced in time. In such cases, the difference in modal shares, using FB w.r.t. SB, is in the range of [0%, +5%] meaning that FB models tend to overestimate HSR modal shares. When the demand distribution is not uniform, the difference in modal shares, using FB w.r.t. SB, is in the range of [−10%, +10%] meaning that FB models can overestimate or underestimate HSR modal shares, depending on timetable settings with respect to travelers’ desired departure times. The differences in on-board train flow estimates are more substantial in both cases of uniform and not uniform demand distribution.  相似文献   

18.
In this study, we focus on improving system-wide equity performance in an oversaturated urban rail transit network based on multi-commodity flow formulation. From the system perspective, an urban rail transit network is a distributed system, where a set of resources (i.e., train capacity) is shared by a number of users (i.e., passengers), and equitable individuals and groups should receive equal shares of resources. However, when oversaturation occurs in an urban rail transit network during peak hours, passengers waiting at different stations may receive varying shares of train capacity leading to the inequity problem under train all-stopping pattern. Train skip-stopping pattern is an effective operational approach, which holds back some passengers at stations and re-routes their journeys in the time dimension based on the available capacity of each train. In this study, the inequity problem in an oversaturated urban rail transit network is analyzed using a multi-commodity flow modeling framework. In detail, first, discretized states, corresponding to the number of missed trains for passengers, are constructed in a space-time-state three-dimensional network, so that the system-wide equity performance can be viewed as a distribution of all passengers in different states. Different from existing flow-based optimization models, we formulate individual passenger and train stopping pattern as commodity and network structure in the multi-commodity flow-modeling framework, respectively. Then, we aim to find an optimal commodity flow and well-designed network structure through the proposed multi-commodity flow model and simultaneously achieve the equitable distribution of all passengers and the optimal train skip-stopping pattern. To quickly solve the proposed model and find an optimal train skip-stopping pattern with preferable system-wide equity performance, the proposed linear programming model can be effectively decomposed to a least-cost sub-problem with positive arc costs for each individual passenger and a least-cost sub-problem with negative arc costs for each individual train under a Lagrangian relaxation framework. For application and implementation, the proposed train skip-stopping optimization model is applied to a simple case and a real-world case based on Batong Line in the Beijing Subway Network. The simple case demonstrates that our proposed Lagrangian relaxation framework can obtain the approximate optimal solution with a small-gap lower bound and a lot of computing time saved compared with CPLEX solver. The real-world case based on Batong Line in the Beijing Subway Network compares the equity and efficiency indices under the operational approach of train skip-stopping pattern with those under the train all-stopping pattern to state the advantage of the train skip-stopping operational approach.  相似文献   

19.
This paper considers the train scheduling problem for an urban rail transit network. We propose an event-driven model that involves three types of events, i.e., departure events, arrival events, and passenger arrival rates change events. The routing of the arriving passengers at transfer stations is also included in the train scheduling model. Moreover, the passenger transfer behavior (i.e., walking times and transfer times of passengers) is also taken into account in the model formulation. The resulting optimization problem is a real-valued nonlinear nonconvex problem. Nonlinear programming approaches (e.g., sequential quadratic programming) and evolutionary algorithms (e.g., genetic algorithms) can be used to solve this train scheduling problem. The effectiveness of the event-driven model is evaluated through a case study.  相似文献   

20.
This work is originally motived by the re-planning of a bus network timetable. The existing timetable with even headways for the network is generated using line by line timetabling approach without considering the interactions between lines. Decision-makers (i.e., schedulers) intend to synchronize vehicle timetable of lines at transfer nodes to facilitate passenger transfers while being concerned with the impacts of re-designed timetable on the regularity of existing timetable and the accustomed trip plans of passengers. Regarding this situation, we investigate a multi-objective re-synchronizing of bus timetable (MSBT) problem, which is characterized by headway-sensitive passenger demand, uneven headways, service regularity, flexible synchronization and involvement of existing bus timetable. A multi-objective optimization model for the MSBT is proposed to make a trade-off between the total number of passengers benefited by smooth transfers and the maximal deviation from the departure times of the existing timetable. By clarifying the mathematical properties and solution space of the model, we prove that the MSBT problem is NP-hard, and its Pareto-optimal front is non-convex. Therefore, we design a non-dominated sorting genetic (NSGA-II) based algorithm to solve this problem. Numerical experiments show that the designed algorithm, compared with enumeration method, can generate high-quality Pareto solutions within reasonable times. We also find that the timetable allowing larger flexibility of headways can obtain more and better Pareto-optimal solutions, which can provide decision-makers more choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号