首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Paratransit services bridge the gap between static fixed route transit and the flexible automobile travel. Paratransit services provide personalized public trapsportation by responding to the needs of individual markets and users. Unfortunately, fragmentation of the paratransit sector and institutional and regulatory constraints have prevented or complicated realization of paratransit's full potential. The orientation in this paper is not primarily to identify promising paratransit applications. Rather, it is to examine basic characteristics of paratransit services, fundamental issues unique to paratransit, existing problems that are constraining paratransit development, and ways to overcome or minimize existing difficulties. A taxonomy of paratransit services is proposed so that these systems can be better related to each other. The institutional environment of paratransit is examined from the viewpoints of planning, operations and regulation. A primary focus is on integration of various paratransit services and of paratransit and conventional fixed route services. Several proposals are made relating to improvements in existing services, new service concepts, new institutional arrangements and service integration.  相似文献   

2.
State agencies responsible for ADA-eligible paratransit services are increasingly under pressure to contain costs and maximize service quality. Many do not operate vehicles themselves; instead, they contract out the provision of services. Contractors are paid for each hour of service. They are responsible for hiring crew, forming routes, dispatching, and operating and maintaining agency-owned vehicles. In the Twin Cities of Minneapolis and Saint Paul, Metro Mobility, the agency responsible for providing paratransit services, requires contractors to use agency-approved software for booking trips dynamically and sets parameters that guide contractors’ practices. Customer trips booked in this fashion may not utilize capacity in the most efficient manner. Therefore, beginning with the daily trip schedules generated by the software, this paper proposes two approaches for improving the efficiency of paratransit operations and estimates the benefit of using these approaches via experiments that utilize Metro Mobility data. The first approach re-optimizes routes developed at the end of each day. The second approach evaluates the benefit to state agencies of selectively using non-dedicated service providers such as taxis. Both approaches are tested on actual data obtained from Metro Mobility. The study shows that a conservative estimate of savings from re-optimization would be approximately 5% of Metro Mobility’s operating costs. Savings from the use of taxis are smaller and in the range of hundreds of dollars per day.  相似文献   

3.
Identifying the generators of paratransit trips by persons with disabilities is important to comprehend the current demand patterns and forecast future demand. Only a handful of studies have been conducted so far to identify the generators of paratransit trips and most focused on the home end of the trips. Given some of the inconsistencies in past studies and the scarcity of studies on the generators of trips away from home, this study attempts to identify the generators of paratransit trips beginning and ending at clients’ homes and away from home. It uses an extremely large dataset consisting of 1.91 million trips made by NJ TRANSIT’s Access Link clients, socioeconomic data from the American Community Survey, employment data from the Longitudinal Employer-Household Dynamics, and establishment data from Dun and Bradstreet. The analytical methods include an ordinary least squares model (OLS) and several spatial generalized linear mixed models (GLMM) to identify the characteristics of census block groups associated with Access Link trip generation at home and away from home, Geographic Information System (GIS) analysis to identify the types of establishments located in the immediate vicinity of drop-offs, and a multinomial logit model (MNL) to examine the relationship between the characteristics of the establishments in the vicinity of drop-offs and the characteristics of the dropped-off clients. Together, the various analyses provide useful insights about paratransit trip generators at the macro and micro levels. Some implications of the findings are discussed.  相似文献   

4.
ABSTRACT

Public transport in cities of the Global South is mainly provided by paratransit operators who self-regulate their services in the absence of adequate formal transport supply and due to weak or no formal regulatory framework and enforcement. Paratransit operators compete with each other for passengers as every passenger translates into profit. Governments in the Global South have sought to reform public transport services through Bus Rapid Transit (BRT) to regulate and ensure efficiency, address the problems of drivers competition and negative externalities associated with paratransit operations. Paratransit operators have been considered as one of the barriers to public transport reforms such as BRT without much consideration for their style of operations. This neglect has contributed to their resistance and low interest in participating in BRT and has even led to opposition. Consequently, non-consideration of incumbent operators in the implementation of transit reforms has been one important reason for delay or failure in their introduction. In this study, we identify reasons why paratransit operators resist and show low interest in BRT even in situations where public institutions have opted not to replace them but rather invite them to participate in the reforms. The basis is a case study analysis of four cities with different characteristics and different BRT implementation strategies where paratransit operators showed resistance and low interest to participate. We identify (1) loss of autonomy, flexibility and established practices/routines, (2) financial and economic risk avoidance and (3) lack of trust in governments who initiate reforms as a basis for their resistance and low interest. These findings are theoretically substantiated by organisational management and social psychology concepts that explain resistance to change. Understanding and recognising these reasons may help planners in designing more appropriate strategies for paratransit reforms.  相似文献   

5.
Autonomous vehicle (AV) technology holds great promise for improving the efficiency of traditional vehicle sharing systems. In this paper, we investigate a new vehicle sharing system using AVs, referred to as autonomous vehicle sharing and reservation (AVSR). In such a system, travelers can request AV trips ahead of time and the AVSR system operator will optimally arrange AV pickup and delivery schedules and AV trip chains based on these requests. A linear programming model is proposed to efficiently solve for optimal solutions for AV trip chains and required fleet size through constructed AVSR networks. Case studies show that AVSR can significantly increase vehicle use rate (VUR) and consequentially reduce vehicle ownership significantly. In the meantime, it is found that the actual vehicle miles traveled (VMT) in AVSR systems is not significantly more than that of conventional taxis, despite inevitable empty hauls for vehicle relocation in AVSR systems. The results imply huge potential benefits from AVSR systems on improving mobility and sustainability of our current transportation systems.  相似文献   

6.
Paratransit refers to urban transport services “somewhere between private passenger transport and conventional public transport in terms of cost and quality of service” [Rimmer (1980), Paratransit: A commentary. Environ. Plan. A 12, 937–944]. Since the 1980s, a new form of paratransit—residents’ coach, which provides exclusive transport services to residents living in private housing estates—has emerged in Hong Kong. What was the background underlying the emergence and subsequent growth of residents’ coach services? Also, what was the role of residents’ coach in the public transport system of Hong Kong? With the completion of more railway extensions, should residents’ coach services be replaced? If so, what are the potential impacts on people’s life? This paper addresses the above research questions through a large-scale questionnaire survey that examined not only people’s modal choice but also their residential choice, socio-economic background and attitudes. The findings suggest that transport policy makers should pay more attention to examine new forms of paratransit and the ways of integrating them into the overall public transport system, both spatially and temporally. It is only through the development of an efficient and multi-modal transport system can the maximum potential of paratransit in filling the transport gap between conventional mass transit and private cars be realized.  相似文献   

7.
Santa Clara County, California experienced a sharp growth in demand‐responsive paratransit ridership for individuals with disabilities, as a result of the passage of the 1990 Americans With Disabilities Act (ADA). This paper describes an automated paratransit system for the ADA‐type paratransit operation implemented in Santa Clara County. It automated paratransit reservation, scheduling, and routing functions. The key components of this system were a digital geographic database (DGD) and an automated trip scheduling system (ATSS). Empirical evidence after one year of operation indicates numerous benefits of this automation. There were significant reductions in the paratransit operating costs and an increase in the percent shared rides. The savings in operating costs far exceeded the annualized capital cost of automation. A user survey indicates that these improvements were achieved without degradation to service quality such as vehicle on‐time performance, invehicle travel times, vehicle response to open return, and ride comfort.  相似文献   

8.
Accurate measurement of travel behaviour is vital for transport planning, modelling, public health epidemiology, and assessing the impact of travel interventions. Self-reported diaries and questionnaires are traditionally used as measurement tools; advances in Global Positioning Systems (GPS) technology allow for comparison. This review aimed to identify and report about studies comparing self-reported and GPS-measured journey durations. We systematically searched, appraised, and analysed published and unpublished articles from electronic databases, reference lists, bibliographies, and websites up to December 2012. Included studies used GPS and self-report to investigate trip duration. The average trip duration from each measure was compared and an aggregated, pooled estimate of the difference, weighted by number of trips, was calculated. We found 12 results from eight eligible studies. All studies showed self-reported journey times were greater than GPS-measured times. The difference between self-report and GPS times ranged from over-reporting of +2.2 to +13.5 minutes per journey. The aggregated, pooled estimate of the difference, weighted by number of trips, was over-report of +4.4 minutes (+28.6%). Studies comparing self-reported and GPS-measured journey duration have shown self-reported to be consistently over-reported across the study sample. Our findings suggest that when using self-reported journey behaviour, the journey durations should be treated as an over-estimation.  相似文献   

9.
Hub‐and‐spoke networking is a key feature of current aviation markets in which hubs, as connecting points, function to consolidate and redistribute flows. This indicates that observation of traffic on a segment does not necessarily convey information about the origin to destination routing of passenger journeys because of the unavoidable detours in the system. This paper examines the heterogeneity of the flow composition in domestic and international US markets, which in turn allows us to observe the variation of operations across major hubs. A modified Route Flow Estimator for origin–destination synthesis (or origin–destination matrix estimation) is designed to decompose the segment traffic into itinerary‐based passenger trips. Several public and commercial databases, which are easily accessible, are exploited (and reconciled) for the model in order to (i) generate possible trip itineraries using those segment markets, and (ii) link data‐driven operational conditions with the underlying segment flows. The results are validated with US domestic trip observations and empirical knowledge related to the air transportation system. Then, the variability of the hub operations is examined based on sensitivity tests using the model parameters. From the resolution of itinerary‐based estimates, we observe that major airports' hub operations are spatially uneven, particularly with respect to domestic and international connecting passengers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Using a data-set collected among paratransit users in Bandung, Indonesia, this paper explores the impacts of paratransit users' negative experiences and dissatisfactions with their paratransit usage pattern. Segmentation and ordered probit analyses are used to examine the impacts of users' opinions on service quality on their trip-making behaviour. The results indicate that users are divided into six segments – namely, the unlucky, the young user, the experienced, the adapter, the infrequent user and the captive. The results further indicate that paratransit users, especially women, perceive negative experiences related to on-time performance (departure and arrival time) and security issues related to vehicles. Despite these dissatisfactions and negative experiences, they are still likely to use paratransit as part of their daily life. Two paratransit market segments (the adapter and the captive) are also likely to result in more trips using paratransit. The study offers several strategies and recommendations that can improve the current paratransit system so that it can better serve local needs.  相似文献   

11.
Transit agencies frequently upgrade rail tracks to bring the system to a state of good repair (SGR) and to improve the speed and reliability of urban rail transit service. For safety during construction, agencies establish slow zones in which trains must reduce speed. Slow zones create delays and schedule disruptions that result in customer dissatisfaction and discontinued use of transit, either temporarily or permanently. While transit agencies are understandably concerned about the possible negative effects of slow zones, empirical research has not specifically examined the relationship between slow zones and ridership. This paper partially fills that gap. Using data collected from the Chicago Transit Authority (CTA) Customer Experience Survey, CTA Slow Zone Maps, and, the Automatic Fare Collection System (AFC), it examines whether recurring service delays due to slow zones affect transit rider behavior and if the transit loyalty programs, such as smart card systems, increase or decrease rider defections. Findings suggest that slow zones increase headway deviation which reduces ridership. Smart card customers are more sensitive to slow zones as they are more likely to stop using transit as a result of delay. The findings of this paper have two major policy implications for transit agencies: (1) loyalty card users, often the most reliable source of revenue, are most at risk for defection during construction and (2) it is critical to minimize construction disruptions and delays in the long run by maintaining state of good repair. The results of this paper can likely be used as the basis for supporting immediate funding requests to bring the system to an acceptable state of good repair as well as stimulating ideas about funding reform for transit.  相似文献   

12.
This paper explores the use of smartphone applications for trip planning and travel outcomes using data derived from a survey conducted in Halifax, Nova Scotia, in 2015. The study provides empirical evidence of relationships of smartphone use for trip planning (e.g. departure time, destination, mode choice, coordinating trips and performing tasks online) and resulting travel outcomes (e.g. vehicle kilometers traveled, social gathering, new place visits, and group trips) and associated factors. Several sets of factors such as socio-economic characteristics and travel characteristics are tested and interpreted. Results suggest that smartphone applications mostly influence younger individuals’ trip planning decisions. Transit pass owners are the frequent users of smartphone applications for trip planning. Findings suggest that transit pass owners commonly use smartphone applications for deciding departure times and mode choices. The study also identifies the limited impact of smartphone application use on reducing travel outcomes, such as vehicle kilometers traveled. The highest impact is in visiting new places (a 48.8% increase). The study essentially offers an original in-depth understanding of how smartphone applications are affecting everyday travel.  相似文献   

13.
Vehicle scheduling plays a profound role in public transit planning. Traditional approaches for the Vehicle Scheduling Problem (VSP) are based on a set of predetermined trips in a given timetable. Each trip contains a departure point/time and an arrival point/time whilst the trip time (i.e. the time duration of a trip) is fixed. Based on fixed durations, the resulting schedule is hard to comply with in practice due to the variability of traffic and driving conditions. To enhance the robustness of the schedule to be compiled, the VSP based on stochastic trip times instead of fixed ones is studied. The trip times follow the probability distributions obtained from the data captured by Automatic Vehicle Locating (AVL) systems. A network flow model featuring the stochastic trips is devised to better represent this problem, meanwhile the compatibility of any pair of trips is redefined based on trip time distributions instead of fixed values as traditionally done. A novel probabilistic model of the VSP is proposed with the objectives of minimizing the total cost and maximizing the on-time performance. Experiments show that the probabilistic model may lead to more robust schedules without increasing fleet size.  相似文献   

14.
The delay costs of traffic disruptions and congestion and the value of travel time reliability are typically evaluated using single trip scheduling models, which treat the trip in isolation of previous and subsequent trips and activities. In practice, however, when activity scheduling to some extent is flexible, the impact of delay on one trip will depend on the actual and predicted travel time on itself as well as other trips, which is important to consider for long-lasting disturbances and when assessing the value of travel information. In this paper we extend the single trip approach into a two trips chain and activity scheduling model. Preferences are represented as marginal activity utility functions that take scheduling flexibility into account. We analytically derive trip timing optimality conditions, the value of travel time and schedule adjustments in response to travel time increases. We show how the single trip models are special cases of the present model and can be generalized to a setting with trip chains and flexible scheduling. We investigate numerically how the delay cost depends on the delay duration and its distribution on different trips during the day, the accuracy of delay prediction and travel information, and the scheduling flexibility of work hours. The extension of the model framework to more complex schedules is discussed.  相似文献   

15.
This paper presents a simulation system that has been developed to model a variety of technology-oriented dial-a-ride paratransit systems operated in an urban environment. The latest advances in information technologies such as automatic vehicle location (AVL), digital telecommunication and computers have afforded a unique opportunity for public transit agencies to integrate these technologies in their paratransit systems for improved productivity and reliability. This opportunity has also prompted wide spread interest in quantifying the actual benefits that can be attained from such technological enhancement. The primary objective of the simulation model described in this paper was to facilitate the evaluation of the potential effects that these technologies may bring on a paratransit system. The paper discusses the general concepts, models and computational techniques applied in the simulation system, focusing on how various components are modeled and how they interact with each other in the overall simulation framework. The simulation system is applied to evaluate the potential operational improvement that may be attained from the application of automatic vehicle location technology.  相似文献   

16.
The lack of personalized solutions for managing the demand of joint leisure trips in cities in real time hinders the optimization of transportation system operations. Joint leisure activities can account for up to 60% of trips in cities and unlike fixed trips (i.e., trips to work where the arrival time and the trip destination are predefined), leisure activities offer more optimization flexibility since the activity destination and the arrival times of individuals can vary.To address this problem, a perceived utility model derived from non-traditional data such as smartphones/social media for representing users’ willingness to travel a certain distance for participating in leisure activities at different times of day is presented. Then, a stochastic annealing search method for addressing the exponential complexity optimization problem is introduced. The stochastic annealing method suggests the preferred location of a joint leisure activity and the arrival times of individuals based on the users’ preferences derived from the perceived utility model. Test-case implementations of the approach used 14-month social media data from London and showcased an increase of up to 3 times at individuals’ satisfaction while the computational complexity is reduced to almost linear time serving the real-time implementation requirements.  相似文献   

17.
Intelligent transportation systems (ITS) have been used to alleviate congestion problems arising due to demand during peak periods. The success of ITS strategies relies heavily on two factors: 1) the ability to accurately estimate the temporal and spatial distribution of travel demand on the transportation network during peak periods, and, 2) providing real‐time route guidance to users. This paper addresses the first factor. A model to estimate time dependent origin‐destination (O‐D) trip tables in urban areas during peak periods is proposed. The daily peak travel period is divided into several time slices to facilitate simulation and modeling. In urban areas, a majority of the trips during peak periods are work trips. For illustration purposes, only peak period work trips are considered in this paper. The proposed methodology is based on the arrival pattern of trips at a traffic analysis zone (TAZ) and the distribution of their travel times. The travel time matrix for the peak period, the O‐D trip table for the peak period, and the number of trips expected to arrive at each TAZ at different work start times are inputs to the model. The model outputs are O‐D trip tables for each time slice in the peak period. 1995 data for the Las Vegas metropolitan area are considered for testing and validating the model, and its application. The model is reasonably robust, but some lack of precision was observed. This is due to two possible reasons: 1) rounding‐off, and, 2) low ratio of total number of trips to total number of O‐D pair combinations. Hence, an attempt is made to study the effect of increasing this ratio on error estimates. The ratio is increased by multiplying each O‐D pair trip element with a scaling factor. Better estimates were obtained. Computational issues involved with the simulation and modeling process are discussed.  相似文献   

18.
The trip timing and mode choice are two critical decisions of individual commuters mostly define peak period traffic congestion in urban areas. Due to the increasing evidence in many North American cities that the duration of the congested peak travelling periods is expanding (peak spreading), it becomes necessary and natural to investigate these two commuting decisions jointly. In addition to being considered jointly with mode choice decisions, trip timing must also be modelled as a continuous variable in order to precisely capture peak spreading trends in a policy sensitive transportation demand model. However, in the literature to date, these two fundamental decisions have largely been treated separately or in some cases as integrated discrete decisions for joint investigation. In this paper, a discrete-continuous econometric model is used to investigate the joint decisions of trip timing and mode choice for commuting trips in the Greater Toronto Area (GTA). The joint model, with a multinomial logit model for mode choice and a continuous time hazard model for trip timing, allows for unrestricted correlation between the unobserved factors influencing these two decisions. Models are estimated by occupation groups using 2001 travel survey data for the GTA. Across all occupation groups, strong correlations between unobserved factors influencing mode choice and trip timing are found. Furthermore, the estimated model proves that it sufficiently captures the peak spreading phenomenon and is capable of being applied within the activity-based travel demand model framework.  相似文献   

19.
In the past few decades, travel patterns have become more complex and policy makers demand more detailed information. As a result, conventional data collection methods seem no longer adequate to satisfy all data needs. Travel researchers around the world are currently experimenting with different Global Positioning System (GPS)-based data collection methods. An overview of the literature shows the potential of these methods, especially when algorithms that include spatial data are used to derive trip characteristics from the GPS logs. This article presents an innovative method that combines GPS logs, Geographic Information System (GIS) technology and an interactive web-based validation application. In particular, this approach concentrates on the issue of deriving and validating trip purposes and travel modes, as well as allowing for reliable multi-day data collection. In 2007, this method was used in practice in a large-scale study conducted in the Netherlands. In total, 1104 respondents successfully participated in the one-week survey. The project demonstrated that GPS-based methods now provide reliable multi-day data. In comparison with data from the Dutch Travel Survey, travel mode and trip purpose shares were almost equal while more trips per tour were recorded, which indicates the ability of collecting trips that are missed by paper diary methods.  相似文献   

20.
《运输规划与技术》2012,35(8):848-867
ABSTRACT

This study introduces a framework to improve the utilization of new data sources such as automated vehicle location (AVL) and automated passenger counting (APC) systems in transit ridership forecasting models. The direct application of AVL/APC data to travel forecasting requires an important intermediary step that links stops and activities – boarding and alighting – to the actual locations (at the traffic analysis zone (TAZ) level) that generated/attracted these trips. GIS-based transit trip allocation methods are developed with a focus on considering the case when the access shed spans multiple TAZs. The proposed methods improve practical applicability with easily obtained data. The performance of the proposed allocation methods is further evaluated using transit on-board survey data. The results show that the methods can effectively handle various conditions, particularly for major activity generators. The average errors between observed data and the proposed method are about 8% for alighting trips and 18% for boarding trips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号