首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This study aims to explore how factors including charging infrastructure and battery technology associate the way people currently charge their battery electric vehicles, as well as to explore whether good use of battery capacity can be encouraged. Using a stochastic frontier model applied to panel data obtained in a field trial on battery electric vehicle usage in Japan, the remaining charge when mid-trip fast charging begins is treated as a dependent variable. The estimation results obtained using four models, for commercial and private vehicles, respectively, on working and non-working days, show that remaining charge is associated with number of charging stations, familiarity with charging stations, usage of air-conditioning or heater, battery capacity, number of trips, Vehicle Miles of Travel, paid charging. However, the associated factors are not identical for the four models. In general, EVs with high-capacity batteries are initiated at higher remaining charge, and so are the mid-trip fast charging events in the latter period of this trial. The estimation results also show that there are great opportunities to encourage more efficient charging behavior. It appears that the stochastic frontier modeling method is an effective way to model the remaining charge at which fast-charging should be initiated, since it incorporates trip and vehicle characteristics into the estimation process to some extent.  相似文献   

2.
This study explores how battery electric vehicle users choose where to fast-charge their vehicles from a set of charging stations, as well as the distance by which they are generally willing to detour for fast-charging. The focus is on fast-charging events during trips that include just one fast-charge between origin and destination in Kanagawa Prefecture, Japan. Mixed logit models with and without a threshold effect for detour distance are applied to panel data extracted from a two-year field trial on battery electric vehicle usage in Japan. Findings from the mixed logit model with threshold show that private users are generally willing to detour up to about 1750 m on working days and 750 m on non-working days, while the distance is 500 m for commercial users on both working and non-working days. Users in general prefer to charge at stations requiring a shorter detour and use chargers located at gas stations, and are significantly affected by the remaining charge. Commercial users prefer to charge at stations encountered earlier along their paths, while only private users traveling on working days show such preference and they turn to prefer the stations encountered later when choosing a station in peak hours. Only private users traveling on working days show a strong preference for free charging. Commercial users tend to pay for charging at a station within 500 m detour distance. The fast charging station choice behavior is heterogeneous among users. These findings provide a basis for early planning of a public fast charging infrastructure.  相似文献   

3.
This paper examines choice behaviors pertaining to the time at which users of plug-in hybrid electric vehicle with 24 km electric range charge their vehicles after arriving at home under a dynamic electricity pricing scheme. The following mutually exclusive alternatives are presented: no charging, charging immediately after arriving at home, charging at the cheapest time, and charging at other times. Four versions of a mixed logit model with unobserved heterogeneity are applied to panel data on vehicle usage from 9 households with 2226 observations in Toyota City. Estimation results suggest that users’ willingness to charge become stronger with increasing driving distance when the driving distance is less than the electric range of 24 km, while tend not to charge when the driving distance is longer than the electric range. Users who return home at the cheapest time or during the day are willing to charge immediately after arriving at home. Electricity prices significantly affect choices to charge at the cheapest time for all users, and stay-at-home mother users and users returning home in the evening tend to charge at the cheapest time. Users returning home in the evening also tend to charge at other times, and being accustomed to charge at a certain time increases the probability of charging at other times. In addition, considerable variations are found across individuals with respect to their preferences for charge timing alternatives as well as for electricity prices.  相似文献   

4.
Given the rapid development of charging-while-driving technology, we envision that charging lanes for electric vehicles can be deployed in regional or even urban road networks in the future and thus attempt to optimize their deployment in this paper. We first develop a new user equilibrium model to describe the equilibrium flow distribution across a road network where charging lanes are deployed. Drivers of electric vehicles, when traveling between their origins and destinations, are assumed to select routes and decide battery recharging plans to minimize their trip times while ensuring to complete their trips without running out of charge. The battery recharging plan will dictate which charging lane to use, how long to charge and at what speed to operate an electric vehicle. The speed will affect the amount of energy recharged as well as travel time. With the established user equilibrium conditions, we further formulate the deployment of charging lanes as a mathematical program with complementarity constraints. Both the network equilibrium and design models are solved by effective solution algorithms and demonstrated with numerical examples.  相似文献   

5.
6.
Commercial vehicle fleets constitute a favourable entry for plug-in electric vehicles (PEVs) into the road transport system. During an extensive demonstration project, with 500 PEVs operating in 100 public and private enterprises, 40 battery electric vehicle (BEV) users were invited to focus group discussions. The focus groups allowed the users to discuss their actual experiences of operating BEVs and thereby provide a greater understanding of the operating conditions experienced by BEV users in different organisations. Based on the discussions, this paper focus on operational barriers, rather than traditional technical or economical barriers. The findings complemented earlier data collected from the demonstration project and further explained the recorded driving and charging behaviour. The conditions to adopt the BEVs vary between the users, and this in turn can relate to organisational conditions. Given a favourable introduction, users adopt and accept the technology. The paper contributes with new findings regarding implementation of BEVs in commercial vehicle fleets and provides an in-depth understanding of the operational barriers that public or private enterprises face when introducing BEVs in their vehicle fleets.  相似文献   

7.
The aim of the German Government is the licensing of one million electric vehicles (EV) in Germany until 2020. However, the number of battery electric vehicles (EVs) today still is just above 25,000. There are several reasons for deciding against an EV, but especially low battery ranges as well as too long perceived charging duration inhibit the usage of an EV. To eliminate the negative influence of these two reasons on the decision to purchase an EV, a novel charging technology is established. The rapid-charging technology enables the user to recharge the battery to 80% of its state of charge (SOC) within 20–30 min. For the examination of the technology’s impact from (potential) user’s perspective, users and nonusers of battery electric vehicles were questioned about the perceived additional value of public rapid-charging infrastructure by taking into account different trip purposes and running comparisons to regular charging options. The results show an increased perceived value especially for trips with leisure purpose, considering their share of all trip purposes in Germany, according to the MiD 2008. In order to increase the number of licensed EVs in Germany, the study’s results also suggest further dissemination of information on rapid charging which might influence the perceived usefulness of the technology and consequentially the perceived usefulness of an EV.  相似文献   

8.
The benefit of using a PHEV comes from its ability to substitute gasoline with electricity in operation. Defined as the proportion of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity, but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated based on the daily vehicle miles traveled (DVMT) by assuming motorists leave home in the morning with a full battery, and no charge occurs before returning home in the evening. Such an assumption, however, ignores the impact of the heterogeneity in both travel and charging behavior, such as going back home more than once in a day, the impact of available charging time, and the price of gasoline and electricity. Moreover, the conventional UFs are based on the National Household Travel Survey (NHTS) data, which are one-day travel data of each sample vehicle. A motorist’s daily travel distance variation is ignored. This paper employs the GPS-based longitudinal travel data (covering 3–18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate how such travel and charging behavior affects UFs. To do this, for each vehicle, we organized trips to a series of home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. On the other hand, it is seen that the workplace charge opportunities significantly increase UFs if the CD range is no more than 40 miles.  相似文献   

9.
One full year of high-resolution driving data from 484 instrumented gasoline vehicles in the US is used to analyze daily driving patterns, and from those infer the range requirements of electric vehicles (EVs). We conservatively assume that EV drivers would not change their current gasoline-fueled driving patterns and that they would charge only once daily, typically at home overnight. Next, the market is segmented into those drivers for whom a limited-range vehicle would meet every day’s range need, and those who could meet their daily range need only if they make adaptations on some days. Adaptations, for example, could mean they have to either recharge during the day, borrow a liquid-fueled vehicle, or save some errands for the subsequent day. From this analysis, with the stated assumptions, we infer the potential market share for limited-range vehicles. For example, we find that 9% of the vehicles in the sample never exceeded 100 miles in one day, and 21% never exceeded 150 miles in one day. These drivers presumably could substitute a limited-range vehicle, like electric vehicles now on the market, for their current gasoline vehicle without any adaptation in their driving at all. For drivers who are willing to make adaptations on 2 days a year, the same 100 mile range EV would meet the needs of 17% of drivers, and if they are willing to adapt every other month (six times a year), it would work for 32% of drivers. Thus, it appears that even modest electric vehicles with today’s limited battery range, if marketed correctly to segments with appropriate driving behavior, comprise a large enough market for substantial vehicle sales. An additional analysis examines driving versus parking by time of day. On the average weekday at 5 pm, only 15% of the vehicles in the sample are on the road; at no time during the year are fewer than 75% of vehicles parked. Also, because the return trip home is widely spread in time, even if all cars plug in and begin charging immediately when they arrive home and park, the increased demand on the electric system is less problematic than prior analyses have suggested.  相似文献   

10.
This paper studies the heterogeneous energy cost and charging demand impact of autonomous electric vehicle (EV) fleet under different ambient temperature. A data-driven method is introduced to formulate a two-dimensional grid stochastic energy consumption model for electric vehicles. The energy consumption model aids in analyzing EV energy cost and describing uncertainties under variable average vehicle trip speed and ambient temperature conditions. An integrated eco-routing and optimal charging decision making framework is designed to improve the capability of autonomous EV’s trip level energy management in a shared fleet. The decision making process helps to find minimum energy cost routes with consideration of charging strategies and travel time requirements. By taking advantage of derived models and technologies, comprehensive case studies are performed on a data-driven simulated transportation network in New York City. Detailed results show us the heterogeneous energy impact and charging demand under different ambient temperature. By giving the same travel demand and charging station information, under the low and high ambient temperature within each month, there exist more than 20% difference of overall energy cost and 60% difference of charging demand. All studies will help to construct sustainable infrastructure for autonomous EV fleet trip level energy management in real world applications.  相似文献   

11.
This survey investigates the state-of-the-art in operations and systems-related studies of wireless charging electric vehicles (EVs). The wireless charging EV is one of emerging transportation systems in which the EV’s battery is charged via wireless power transfer (WPT) technology. The system makes use of charging infrastructure embedded under the surface of the road that transfers electric power to the vehicle while it is in transit. The survey focuses on studies related to both dynamic and quasi-dynamic types of wireless charging EV – charging while in motion and while temporarily stopped during a trip, respectively. The ability to charge EVs while in transit has raised numerous operations and systems issues that had not been observed in conventional EVs. This paper surveys the current research on such issues, including decisions on the allocation of charging infrastructure; cost and benefit analyses; billing and pricing; and other supporting operations and facilities. This survey consists of three parts. The first provides an orienting review of terminology specific to wireless charging EVs; it also reviews some past and ongoing developments and implementations of wireless charging EVs. The second part surveys the research on the operations and systems issues prompted by wireless charging EVs. The third part proposes future research directions. The goal of the survey is to provide researchers and practitioners with an overview of research trends and to provide a guide to promising future research directions.  相似文献   

12.
This paper explores how to optimally locate public charging stations for electric vehicles on a road network, considering drivers’ spontaneous adjustments and interactions of travel and recharging decisions. The proposed approach captures the interdependency of different trips conducted by the same driver by examining the complete tour of the driver. Given the limited driving range and recharging needs of battery electric vehicles, drivers of electric vehicles are assumed to simultaneously determine tour paths and recharging plans to minimize their travel and recharging time while guaranteeing not running out of charge before completing their tours. Moreover, different initial states of charge of batteries and risk-taking attitudes of drivers toward the uncertainty of energy consumption are considered. The resulting multi-class network equilibrium flow pattern is described by a mathematical program, which is solved by an iterative procedure. Based on the proposed equilibrium framework, the charging station location problem is then formulated as a bi-level mathematical program and solved by a genetic-algorithm-based procedure. Numerical examples are presented to demonstrate the models and provide insights on public charging infrastructure deployment and behaviors of electric vehicles.  相似文献   

13.
This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of $3.19 per day when exclusively charging at home, compared to $3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.  相似文献   

14.
The emergence of electric unmanned aerial vehicle (E-UAV) technologies, albeit somewhat futuristic, is anticipated to pose similar challenges to the system operation as those of electric vehicles (EVs). Notably, the charging of EVs en-route at charging stations has been recognized as a significant type of flexible load for power systems, which often imposes non-negligible impacts on the power system operator’s decisions on electricity prices. Meanwhile, the charging cost based on charging time and price is part of the trip cost for the users, which can affect the spatio-temporal assignment of E-UAV traffic to charging stations. This paper aims at investigating joint operations of coupled power and electric aviation transportation systems that are associated with en-route charging of E-UAVs in a centrally controlled and yet dynamic setting, i.e., with time-varying travel demand and power system base load. Dynamic E-UAV charging assignment is used as a tool to smooth the power system load. A joint pricing scheme is proposed and a cost minimization problem is formulated to achieve system optimality for such coupled systems. Numerical experiments are performed to test the proposed pricing scheme and demonstrate the benefits of the framework for joint operations.  相似文献   

15.
Shared autonomous vehicles, or SAVs, have attracted significant public and private interest because of their opportunity to simplify vehicle access, avoid parking costs, reduce fleet size, and, ultimately, save many travelers time and money. One way to extend these benefits is through an electric vehicle (EV) fleet. EVs are especially suited for this heavy usage due to their lower energy costs and reduced maintenance needs. As the price of EV batteries continues to fall, charging facilities become more convenient, and renewable energy sources grow in market share, EVs will become more economically and environmentally competitive with conventionally fueled vehicles. EVs are limited by their distance range and charge times, so these are important factors when considering operations of a large, electric SAV (SAEV) fleet.This study simulated performance characteristics of SAEV fleets serving travelers across the Austin, Texas 6-county region. The simulation works in sync with the agent-based simulator MATSim, with SAEV modeling as a new mode. Charging stations are placed, as needed, to serve all trips requested (under 75 km or 47 miles in length) over 30 days of initial model runs. Simulation of distinctive fleet sizes requiring different charge times and exhibiting different ranges, suggests that the number of station locations depends almost wholly on vehicle range. Reducing charge times does lower fleet response times (to trip requests), but increasing fleet size improves response times the most. Increasing range above 175 km (109 miles) does not appear to improve response times for this region and trips originating in the urban core are served the quickest. Unoccupied travel accounted for 19.6% of SAEV mileage on average, with driving to charging stations accounting for 31.5% of this empty-vehicle mileage. This study found that there appears to be a limit on how much response time can be improved through decreasing charge times or increasing vehicle range.  相似文献   

16.
Commercial passenger cars are a possible early market segment for plug-in electric vehicles (PEVs). Compared to privately owned vehicles, the commercial vehicle segment is characterized by higher mileage and a higher share of vehicle sales in Germany. To this point, there are only few studies which analyze the commercial passenger car sector and arrive at contradictory results due to insufficient driving profile data with an observation period of only one day. Here, we calculate the market potential of PEVs for the German commercial passenger car sector by determining the technical and economical potential for PEVs in 2020 from multi-day driving profiles. We find that commercial vehicles are better suited for PEVs than private ones since they show higher average annual mileage and drive more regularly. About 87% of the analyzed three-week vehicle profiles can technically be fulfilled by battery electric vehicles (BEVs) with an electric driving range of about 110 km while plug-in hybrid electric vehicles (PHEVs) with an electric range of 40 km could obtain an electric driving share of 60% on average. In moderate energy price scenarios, PEVs can reach a market share of 2–4% in the German commercial passenger car sales by 2020 and especially the large commercial branches (Trade, Manufacturing, Administrative services and Other services) are important. However, our analysis shows a high sensitivity of results to energy and battery prices as well as electric consumptions.  相似文献   

17.
Battery-only electric vehicles (BEVs) generally offer better air quality through lowered emissions, along with energy savings and security. The issue of long-duration battery charging makes charging-station placement and design key for BEV adoption rates. This work uses genetic algorithms to identify profit-maximizing station placement and design details, with applications that reflect the costs of installing, operating, and maintaining service equipment, including land acquisition. Fast electric vehicle charging stations (EVCSs) are placed across a congested city's network subject to stochastic demand for charging under a user-equilibrium traffic assignment. BEV users’ station choices consider endogenously determined travel times and on-site charging queues. The model allows for congested-travel and congested-station feedback into travelers’ route choices under elastic demand and BEV owners’ station choices, as well as charging price elasticity for BEV charging users.Boston-network results suggest that EVCSs should locate mostly along major highways, which may be a common finding for other metro settings. If 10% of current EV owners seek to charge en route, a user fee of $6 for a 30-min charging session is not enough for station profitability under a 5-year time horizon in this region. However, $10 per BEV charging delivers a 5-year profit of $0.82 million, and 11 cords across 3 stations are enough to accommodate a near-term charging demand in this Boston-area application. Shorter charging sessions, higher fees, and/or allowing for more cords per site also increase profits generally, everything else constant. Power-grid and station upgrades should keep pace with demand, to maximize profits over time, and avoid on-site congestion.  相似文献   

18.
Shared autonomous vehicles (SAVs) are the next major evolution in urban mobility. This technology has attracted much interest of car manufacturers aiming at playing a role as transportation network companies (TNCs) and carsharing agencies in order to gain benefits per kilometer and per ride. It is predicted that the majority of future SAVs would most probably be electric. It is therefore important to understand how limited vehicle range and the configuration of charging infrastructure will affect the performance of shared autonomous electric vehicle (SAEV) services. In this study, we aim to explore the impacts of charging station placement, charging types (including normal and rapid charging, and battery swapping), and vehicle battery capacities on service efficiency. We perform an agent-based simulation of SAEVs across the Rouen Normandie metropolitan area in France. The simulation process features impact assessment by considering dynamic demand responsive to the network and traffic.Research results suggest that the performance of SAEVs is strongly correlated with the charging infrastructure. Importantly, faster charging infrastructure and placement of charging locations according to minimized distances between demand hubs and charging stations result in a higher performance. Further analysis indicates the importance of dispersing charging stations across the service area and its impacts on service effectiveness. The results also underline that SAEV battery capacity has to be selected carefully such that to avoid the overlaps between demand and charging peak times. Finally, the simulation results show that the performance indicators of SAEV service are significantly improved by providing battery swapping infrastructure.  相似文献   

19.
With 36 ventures testing autonomous vehicles (AVs) in the State of California, commercial deployment of this disruptive technology is almost around the corner (California Department of Transportation, 2016). Different business models of AVs, including Shared AVs (SAVs) and Private AVs (PAVs), will lead to significantly different changes in regional vehicle inventory and Vehicle Miles Travelled (VMT). Most prior studies have already explored the impact of SAVs on vehicle ownership and VMT generation. Limited understanding has been gained regarding vehicle ownership reduction and unoccupied VMT generation potentials in the era of PAVs. Motivated by such research gap, this study develops models to examine how much vehicle ownership reduction can be achieved once private conventional vehicles are replaced by AVs and the spatial distribution of unoccupied VMT accompanied with the vehicle reduction. The models are implemented using travel survey and synthesized trip profile from Atlanta Metropolitan Area. The results show that more than 18% of the households can reduce vehicles, while maintaining the current travel patterns. This can be translated into a 9.5% reduction in private vehicles in the study region. Meanwhile, 29.8 unoccupied VMT will be induced per day per reduced vehicles. A majority of the unoccupied VMT will be loaded on interstate highways and expressways and the largest percentage inflation in VMT will occur on minor local roads. The results can provide implications for evolving trends in household vehicles uses and the location of dedicated AV lanes in the PAV dominated future.  相似文献   

20.
This research evaluated the potential for wireless dynamic charging (charging while moving) to address range and recharge issues of modern electric vehicles by considering travel to regional destinations in California. A 200-mile electric vehicle with a real range of 160 miles plus 40 miles reserve was assumed to be used by consumers in concert with static and dynamic charging as a strict substitute for gasoline vehicle travel. Different combinations of wireless charging power (20–120 kW) and vehicle range (100–300 miles) were evaluated. One of the results highlighted in the research indicated that travel between popular destinations could be accomplished with a 200-mile EV and a 40 kW dynamic wireless charging system at a cost of about $2.5 billion. System cost for a 200-mile EV could be reduced to less than $1 billion if wireless vehicle charging power levels were increased to 100 kW or greater. For vehicles consuming 138 kWh of dynamic energy per year on a 40 kW dynamic system, the capital cost of $2.5 billion plus yearly energy costs could be recouped over a 20-year period at an average cost to each vehicle owner of $512 per year at a volume of 300,000 vehicles or $168 per year at a volume of 1,000,000 vehicles. Cost comparisons of dynamic charging, increased battery capacity, and gasoline refueling were presented. Dynamic charging, coupled with strategic wayside static charging, was shown to be more cost effective to the consumer over a 10-year period than gasoline refueling at $2.50 or $4.00 per gallon. Notably, even at very low battery prices of $100 per kWh, the research showed that dynamic charging can be a more cost effective approach to extending range than increasing battery capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号