首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《JSAE Review》1998,19(4):311-317
We have investigated combustion characteristics of lean gasoline–air pre-mixture ignited by diesel fuel injection using a high compression direct injection diesel engine. Gasoline was supplied as a uniform lean mixture by using carburetors, and diesel fuel was directly injected into the cylinder. It was confirmed that the lean mixture of air–fuel ratio between 150 and 35 could be ignited and burned by this ignition method. As the diesel fuel injection increased, HC concentration decreased, and NO and CO concentration increased. The exhaust gas emission of pollutants could be reduced when lean mixture was ignited by an optimum diesel fuel injection.  相似文献   

2.
《JSAE Review》1998,19(4):305-310
An instrument to measure time-resolved fuel–air ratio in the vicinity of a spark plug was developed. Properties of absorption and scattering at the wavelengths of visible and infrared rays were utilized to determine the fuel–air ratio in the mixture including liquid and vaporized fuel. The measurement error of the instrument was within 10% as a result of comparison between the overall and the measured fuel–air ratio at the vicinity of the spark plug under the inlet port injection, which forms a relatively homogeneous mixture. The instrument was applied to a direct injection gasoline engine and the mixture formation process was clarified.  相似文献   

3.
《JSAE Review》2002,23(1):9-14
Characteristics of NOx formation in a gas turbine fuelled with hydrogen were analyzed with both an experimental and a numerical approach. This research experimentally investigated NOx reduction effect of rich–lean combustion in a coaxial burner. Hydrogen emits no Prompt NO even in rich mixture conditions, and can be more effective to reduce NOx in the rich–lean combustion system than hydrocarbons. The results show that the rich–lean combustion of hydrogen successfully reduces NOx emission compared with diffusive combustion. In the rich–lean combustion, hydrogen combustion has lower NOx emission compared to methane combustion, especially with larger equivalence ratio of richer side mixture. Calculations of NOx formation in the rich–lean combustion were also done employing the extended Zel’dovich NO formation mechanism.  相似文献   

4.
冯帅  刘勇  张骞  王志勋 《车用发动机》2012,(1):14-18,22
对某直喷汽油机部分负荷时的进气、喷油、混合气形成及燃烧过程进行了数值模拟。分析了喷油正时对混合气分布、燃烧性能及排放性能的影响。模拟结果显示,在喷油开始时刻为480°曲轴转角时混合气分布比较理想,达到了分层稀燃的目标。生成物NO的主要来源是参与燃烧的空气中的氮,NO的生成随温度的提高而急剧增加;炭烟生成的条件是高温和缺氧,局部较浓混合气相对缺氧导致炭烟生成。  相似文献   

5.
The diesel combustion process is highly dependent on fuel injection parameters, and understanding fuel spray development is essential for proper control of the process. One of the critical factors for controlling the rate of mixing of fuel and air is the number of injector holes in a diesel engine. This study was intended to explore the behavior of the formation of spray mixtures, combustion, and emissions as a function of the number of injector hole changes; from this work, we propose an optimal number of holes for superior emissions and engine performance in diesel engine applications. The results show that increasing the number of holes significantly influences evaporation, atomization, and combustion. However, when the number of holes exceeds a certain threshold, there is an adverse effect on combustion and emissions due to a lack of the air entrainment required for the achievement of a stoichiometric mixture.  相似文献   

6.
The use of automotive LPG characteristics which are easy to evaporate vaporization and carry. The paper presents a design of extended-range electric vehicle for wall-guided two stroke LPG engine with direct injection combustion system. Based on the modified vehicle LPG spray model, a database describing the characteristics of vehicle LPG fuel was built and imported into the CFD software. And the accuracy of the model is verified by the Schlieren experimental results. The concentration and velocity field of the mixture in the cylinder under different load conditions are numerically analyzed. The analyzed result indicated that the start injection time θ = 60°–70°CA BTDC under part load condition, the plug electrode near the gathering of a richer mixture is easy to be fired at spark ignition time, the obvious formation of mixture in cylinder is formed and the overall air-fuel ratio is above 40: 1. The start-transition working condition and large load conditions in the piston moves upward before closing the exhaust port to start injection LPG. The optimized LPG injection start time θ ensures that the fresh gas is locked in the cylinder when the exhaust port is closed (63°CA ABDC). In the ignition time of the spark plug, an ideal homogeneous mixture in the cylinder is realized.  相似文献   

7.
To comply with reinforced emission regulations for harmful exhaust gases, including carbon dioxide (CO2) emitted as a greenhouse gas, improved technologies for reducing CO2 and fuel consumption are being developed. Stable lean combustion, which has the advantage of improved fuel economy and reduced emission levels, can be achieved using a sprayguided-type direct-injection (DI) combustion system. The system comprises a centrally mounted injector and closely positioned spark plugs, which ensure the combustion reliability of a stratified mixture under ultra-lean conditions. The aim of this study is to investigate the combustion and emission characteristics of a lean-burn gasoline DI engine. At an excess air ratio of 4.0, approximately 23% improvement in fuel economy was achieved through optimal event timing, which was delayed for injection and advanced for ignition, compared to that under stoichiometric conditions, while NOx and HC emissions increased. The combustion characteristics of a stratified mixture in a spray-guided-type DI system were similar to those in DI diesel engines, resulting in smoke generation and difficulty in three-way catalystutilization. Although a different operating strategy might decrease fuel consumption, it will not be helpful in reducing NOx and smoke emissions; therefore, alternatives should be pursued to achieve compliance with emission regulations.  相似文献   

8.
《JSAE Review》1998,19(4):319-327
This study aimed to reduce NOx and soot by creating a more homogeneous lean fuel distribution in a diesel spray using high-pressure fuel injection and a micro-hole nozzle. This injection system shortened the ignition delay, but a homogeneous lean fuel distribution in the diesel spray was not achieved. Using a lower cetane number fuel, the resulting longer ignition delay made a uniform, lean fuel distribution in the diesel spray possible with this injection system. Ignition and combustion were analyzed by the combustion chamber pressure history, and flame temperatures and KL values were analyzed by the two-color method.  相似文献   

9.
The first firing cycle is very important during cold-start for all types of spark ignition engines. In addition, the combustion characteristics of the first firing cycle affect combustion and emissions in the following cycles. However, the first-cycle fuel-air mixing, combustion and emissions generation within the cylinder of a two-stage direct-injection (TSDI) engine during cold start is not completely understood. Based on the total stoichiometric air-fuel ratio and local richer mixture startup strategy, the first-cycle firing and combustion characteristic at cold start were investigated in a two-stage direct injection (TSDI) gasoline engine. In addition, the effects of the first injection timing, second injection timing, 1st and 2nd fuel injection proportion and total excess air ratio on the in-cylinder pressure, heat release rate and accumulated heat release were analyzed on the basis of a cycle-by-cycle analysis. It is shown that a larger 2nd fuel injection amount and later 2nd injection timing are more beneficial to the firing of the first cycle in the case of a total excess air ratio of 1.0. The optimum 1st and 2nd injection timing fuel injection proportions are 120°CA ATDC during the intake stroke, 60°CA BTDC during the compression stroke and 1:1. In addition, the firing boundary is a 2nd injection timing later than 90°CA BTDC during the compression stroke in the case of the 1st injection timing from 60°CA to 180°CA ATDC during an intake stroke and involves a 1st and 2nd fuel injection proportion of 1:1 and an excess air ratio of 1.0. The study provides a detailed understanding of cold-start combustion characteristics and a guide for optimizing the reliable first-cycle firing at cold start.  相似文献   

10.
汽油喷雾碰壁和油膜形成的可视化试验与数值模拟   总被引:7,自引:2,他引:5  
进气道喷射汽油机混合气形成对燃烧和排放起着重要的作用。为了研究汽油喷雾碰壁过程,利用定容燃烧弹进行了汽油喷雾碰壁直接高速摄影,研究了不同倾斜角度壁面、不同壁面粗糙度和碰壁距离等对喷雾碰壁和油膜形成的影响。在此基础上,利用CFD软件建立了定容燃烧弹内汽油喷雾碰壁和油膜形成过程的三维数值模型。测量了定容燃烧弹内的压力,并与理论值进行了对比分析。研究结果为汽油机进气道喷射系统的设计提供了参考。  相似文献   

11.
《JSAE Review》1999,20(2):177-181
The effects of in-cylinder charge motion, fuel spray characteristics and piston crown geometry on WOT output of a direct-injection gasoline engine were investigated. The mixture formation process in the cylinder was analyzed by computer simulation and LIF visualization. The results made clear the technical factors for achieving sufficient fuel–air mixing in a DI gasoline engine with a bowl-in-piston geometry optimized for stratified charge combustion.  相似文献   

12.
In this study, a visual investigation of sprays and flames is performed, and soot formation in Diesel-GTL fuel blends is studied in a specially designed quiescent constant-volume chamber under various ambient gas temperatures and O2 concentrations. Similar to the case of soot formation during diesel fuel combustion, the sooting zone during the mixing-controlled combustion of Diesel-GTL blends is located in the leading portion of the jet boundaries. Auto-ignition delay and soot concentration decrease with an increase of GTL content in the fuel blend. Soot also decreases with lower O2 concentration, higher injection pressure, and lower ambient gas temperature. The lack of soot formation at lower O2 concentrations and lower temperatures suggests that Diesel-GTL fuel blends can be successfully utilized in low-temperature diesel combustion technologies that are currently being developed. Furthermore, this mixing controlled combustion method with Diesel-GTL blends can be used to modulate various engine operation parameters, and therefore to simultaneously reduce the formation of soot and NOx within a wide range of diesel engine loads.  相似文献   

13.
柴油机的燃烧系统是混合气形成质量的关键。为改善某高强化柴油机的燃烧和排放性能,在保证原机压缩比不变的条件下,设计了一种双层双弧脊分区燃烧系统——双层燃烧室匹配双排喷孔,并基于计算流体力学软件Converge进行数值模拟,研究不同上下排喷孔油束夹角对缸内燃烧和排放的影响。研究结果表明:新设计的燃烧系统的燃烧和排放性能均优于原机,上下排喷孔油束夹角会影响燃油在上下层弧脊处的分配,较大的上排喷孔油束夹角有利于对燃烧室顶隙空间的利用和上层弧脊下侧混合气的形成,较小的下排喷孔油束夹角有利于燃烧室底部凹坑附近空气利用率的提高和混合气分布范围的增加。因此,需要对上下排喷孔油束夹角进行合理的选择和匹配,使得发动机的整体燃烧和排放性能达到最优。  相似文献   

14.
均质化油器通过解决由零部件结构等因素造成的流动阻力,消除了供油系统中的气流紊乱,使混合气几乎在无结构阻力状态下流动,当燃油与空气混合时,始终保持相同的混合气流,形成燃油油粒大小均匀一致、雾化优良的可燃混合气.由于燃油与空气以独特的旋转涡流方式流动,有效地增加了燃油与空气的接触面积,使燃油得到良好的蒸发,从而提高了发动机的燃烧质量.  相似文献   

15.
Lean burn is an effective way to improve spark ignition engine fuel economy. In this paper, the combustion and emission characteristics of a lean burn natural gas fuelled spark ignition engine were investigated at various throttle positions, fuel injection timings, spark timings and air fuel ratios. The results show that ignition timings, the combustion duration, the coefficient of variation (COV) of the indicated mean effective pressure (IMEP) and engine-out emissions are dependent on the overall air fuel ratio, spark timings, throttle positions and fuel injection timings. With the increase of the air fuel ratio, the ignition delays and combustion duration increases. Fuel injection timings affect ignition timings, combustion duration, IMEP, and the COV of the IMEP. Late fuel injection timings can decrease the COV of the IMEP. Moreover, the change in the fuel injection timings reduces the engine-out CO, total hydrocarbon (THC) emissions. Lean burn can significantly reduce NOx emissions, but it results in high cyclic variations.  相似文献   

16.
应用二次喷油及可变进气技术,形成准均质稀混合气,改善了燃烧过程,扩大了发动机稀燃极限。降低了NOx排放量。综合运用三效催化器和空燃比优化控制技术不仅使HC和CO排放接近零,也使NOx排放进一步降低。采用自主开发的电控系统的稀燃汽油机具有较好的燃油经济性。  相似文献   

17.
TJ376Q二气门汽油机准均质稀混合气燃烧实验研究   总被引:1,自引:0,他引:1  
本文对夏利TJ376Q汽油机进气系统进行了改造,大大提高了涡流和滚流比,强化空气运动的结果有利于组织燃料在缸内的浓度分布,从而为在二气门汽油机上实现稀燃烧打下基础;原发动机油器式供油系统被改为电控气道内燃油喷射系统。在此基础上,采用了两次燃油喷射技术。通过对这两次喷油时刻、喷油量的分别调节,在缸内形成精细分层的混合气即所谓准均质混合气,从而优化了油耗和排放指标,成功地在产品二气门汽油机上实现了稀薄燃烧。  相似文献   

18.
In this paper, knocking combustion in dual-fuel diesel engine is modeled and investigated using the CFD code coupled with detailed chemical kinetics. The ethanol/gasoline blend E85 is used as the primary fuel in a dual-fuel combustion concept based on a light-duty diesel engine equipped with a common-rail injection system. The E85 blend is injected and well mixed with intake air in the intake manifold and is ignited by the direct injection diesel fuel. A 46-species, 187-reaction Multicomponent mechanism is adopted to model the auto-ignition process of the E85/air/diesel mixture ahead of the flame front. Based on the model validation, knocking combustion under boost and full load operating condition for 0 %, 20 %, 50 %, as well as 70 % E85 substitute energy is simulated. The effects of E85 substitute rate and two stage injection strategies on knock intensity, power output, as well as location of the auto-ignition initiation is clearly reproduced by the model. The calculation result shows that, for a high E85 rate of 50 % and 70 % with single injection strategies, the most serious knock and the origin of auto-ignition always occurs far away from where the flame of diesel spray is first generated, at the center of combustion chamber, due to higher pressure wave, relatively richer E85 mixture and longer distances of flame propagation. The two stage injection strategies with a small amount of diesel pilot injection ahead of the main injection primarily influence the ignition behavior of the directly injected fuel, leads to a lower pressure rise rate and a reduced propagation distance, both of which contribute to the attenuation of knock intensity for a higher E85 rate.  相似文献   

19.
利用三维仿真软件Ansys Fluent建立了GDI汽油机的仿真计算模型,就变气门升程耦合不同喷油策略对缸内气流运动和混合气形成的影响进行了模拟计算。结果表明,与大气门升程工况相比,小气门升程工况的缸内湍流运动强度、燃油蒸发和湿壁情况以及点火时刻混合气质量都明显改善;在小气门升程工况,采用两段喷油会缩短油气混合时间,过度推迟二次喷油时刻会恶化混合气质量和燃油湿壁情况;在大气门升程工况,两段喷油会改善混合气均匀性,随着二次喷油时刻推迟,燃油蒸发量增加,湿壁情况加剧,混合气质量得到改善;小气门升程工况下采用二次喷油时刻为470°曲轴转角,前后两次喷油量比例为7∶3的两段喷油方案在燃油蒸发和湿壁以及点火时刻缸内混合气质量这几个方面的效果都很好,是最合理的方案。  相似文献   

20.
The objective of new combustion concepts is to meet emission standards by improving fuel air mixing prior to ignition. Since there is no overlap between injection and ignition, combustion is governed mainly by chemical kinetics and it is challenging to control the phasing of ignition. Reactivity Controlled Compression Ignition (RCCI) combustion aims to control combustion phasing by altering the fuel ratios of the high- and low octane fuel and injection timings. In this study the dual fuel blend is prepared with gasoline and diesel fuels. The applied injection timings of the diesel are very early (90 to 60° CA bTDC). In the detailed reaction mechanism, n-heptane and iso-octane represent diesel and gasoline fuel, respectively. A multi-zone model approach is implemented to perform RCCI combustion simulation. Ignition characteristics are analyzed by using CA50 as the main parameter. In the experiments for the early direct injection (DI) timing advancing the injection time results in a later ignition. Qualitatively, the trend effect of the diesel injection timing and the effect of the ratio gasoline/diesel are captured accurately by the multi-zone model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号