首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
分析了桥墩局部冲刷过程,通过在桥墩周围设置护坦以减小桥墩局部冲刷,并对防护效果进行了试验研究和分析,提出了设置护坦桥墩局部冲深的计算方法。  相似文献   

2.
桥墩局部冲刷防护试验研究   总被引:3,自引:0,他引:3  
蒋焕章 《公路》1994,(8):1-8
在公路桥梁水毁中,有不少是因为基础埋深不够所致,如能对浅基桥墩进行局部冲刷防护加固,则可以避免或减少水毁,故此需预测桥墩局部冲刷深度和范围。1990年作者在西安公路学院水力实验室对陕西省石泉汉江大桥的防护进行了专项试验,对桥墩局部冲刷深度计算和冲帽防护的研究成果进行了试验与完善。  相似文献   

3.
东海大桥桥墩区域发生严重冲刷现象,部分群桩桥墩冲刷深度已超过设计警戒值,为确保大桥安全,对桥墩区域实施护底防护措施。本文根据东海大桥过度冲刷区域防护试验工程实践,介绍了工程的设计方案、施工工艺和关键技术以及试验效果,为类似工程提供了参考和指导。  相似文献   

4.
Ⅱ、桥墩局部冲刷计算在河道中修建桥墩后,桥墩对水流的阻碍,引起桥墩周围水流结构的剧烈变化,在墩头前缘形成一种“下降水流”,垂直向下,猛烈冲刷床面泥沙,在墩前冲刷形成一个漏斗形的冲刷坑,称为桥墩局部冲刷。由床面起算的冲刷坑最大深度,称为桥墩局部冲刷深度。  相似文献   

5.
桥梁破坏多数是由洪水严重冲刷基础引起的,工程中需要采取防护措施以保证桥墩基础的安全性.提出了采用预防护和在防护区外形成有效护坦的冲刷防护理念,介绍了冲刷防护平面设计采用核心区、永久防护区和护坦区的平面分区方法,建议采用面层块石+中层碎石+底层砂袋的防护结构形式.现场监测结果表明,模型试验结果与实际最大冲刷深度基本一致,冲刷防护工程对局部冲刷起到了有效的防护作用.  相似文献   

6.
为研究不同墩心距下沿流向串列布置的双圆柱桥墩局部冲刷坑形态的变化规律,提出1种平衡湍流边界层模型以获得稳定的湍流来流边界条件;利用雷诺时均N-S方程和标准k-ε湍流模型求解河床上双圆柱桥墩周围的复杂绕流场;基于能考虑河床面任意斜坡和泥沙坍塌效应的泥沙输运模型和动网格技术模拟双圆柱桥墩局部冲刷的动态演化过程,得到平衡冲刷坑形态,揭示冲刷发展过程的流动特征和冲刷机理。模拟结果与中美规范局部冲刷预测结果比较表明:串列双圆柱桥墩之间存在干扰效应;受下游桥墩施扰,最大冲刷都发生在上游桥墩,冲刷深度比单圆柱桥墩大,当墩心距L与桥墩直径D之比L/D=4时,达到最大值;而下游桥墩受上游桥墩遮挡的影响,最大冲刷深度在L/D=2时达到最小值,随着墩心距的增大,下游冲刷深度增大;当墩心距大于5倍桥墩直径后,下游桥墩可不考虑遮挡效应;获得的串列双圆柱桥墩最大冲刷深度值与美国规范预测值较为接近,而中国规范公式预测值偏小,提出的下游桥墩冲刷深度遮挡因子可为桥梁抗冲刷设计提供参考。  相似文献   

7.
受长江、钱塘江来水来沙和人类活动的影响,东海大桥所在水域海床发生普遍冲刷,桥墩周围发生较大局部冲刷。为防止海床进一步冲深,保证该桥运营安全,对桥墩基础冲刷防护方案进行研究。根据自然条件和工程特点,主体防护区采用袋装碎石上层压载袋装混凝土干混料的防护方案;采用失效风险方法进行比选,确定周边防护区采用复合材料勾连体的防护方案。以该桥某桥墩为例,依据相关规范和研究成果,提出桥墩基础具体冲刷防护方案,开展先导性物理模型试验,依据试验结果及工程实际对防护方案进行优化。结果表明:铺设3层复合材料勾连体时防护结构整体稳定性更强,防护区内形成淤积,促进了防护体与海床的结合,对主体防护区稳定起到积极作用;优化后的防护方案总体能够满足桥墩基础冲刷防护要求。  相似文献   

8.
Ⅲ、桥墩冲刷防护桥墩冲刷防护,主要是在河床的演变过程中,防护桥墩的局部冲刷以保证桥墩的安全。一、桥墩局部冲刷坑范围的确定根据笔者在桥墩局部冲刷模型试验中进行的观测,墩前“下降水流”沿墩头前缘向下冲刷床面泥沙时,沿墩壁冲刷形成一个狭窄的沟槽。随着沟槽的不断加深,沟槽外侧的泥沙也不断坍塌下滑,因而在墩前逐渐形成一个漏斗形的局部冲刷坑。局部冲刷坑的  相似文献   

9.
苏通大桥主墩基础冲刷防护工程质量控制   总被引:1,自引:0,他引:1  
桥墩基础冲刷预防护是近年河口与沿海地区特大型桥梁试用的安全防护措施,根据江苏苏通大桥工程实际,介绍桥墩基础冲刷预防护的科研、设计、施工要点及质量控制。  相似文献   

10.
某跨海大桥桥墩基础冲刷试验研究   总被引:3,自引:0,他引:3  
刘谨  刘芳亮  冯良平  张永良 《公路》2012,(10):61-66
桥梁水毁的最重要原因是桥墩冲刷,正确预测桥梁的冲刷深度能为基础埋置深度的确定提供理论依据。目前国内外对于复合桥墩在实际海洋潮流和不规则波浪联合作用下冲刷深度的计算精度还有待提高,因此进行物理模型试验来确定桥墩冲刷深度就显得尤为重要。根据数值计算提供的水流边界条件,利用正态模型试验的方法,测量往复流及不规则波和往复流共同作用下跨海大桥桥墩基础最大冲刷深度,通过对比试验的方法研究了水流与桥墩不同夹角对不同型式桥墩冲刷的影响以及波流共同作用下的桥墩最大冲刷深度,从而为工程建设的安全性和经济性提供有力的技术支撑,同时也可为同类型其他桥梁冲刷物理模型试验提供参考。  相似文献   

11.
针对阿奥铁路(阿尔及尔—奥兰)中邻河路堤,按监理要求采用抛石措施进行防护。为此,对比了中阿两国铁路冲刷防护措施适用条件的差异,分析抛石冲刷防护设计中的水流速度与防护抛石粒径的关系,以及不同冲刷深度计算方法的区别。结合RBT 78008工点的冲刷防护设计,给出抛石冲刷防护的设计流程。  相似文献   

12.
深海环境修建桥梁墩柱会影响该区域原有的海水运动特征,造成桥梁墩柱局部冲刷破坏。为研究和解决这一问题,以海燕大桥3~#和7~#桥墩为研究对象,在分析其基本地质和水文工程地质条件的基础上,结合现场监测方案,分析了桥梁墩台施工过程中的局部冲刷机理和冲刷深度,并且对照几种普遍的局部冲刷理论公式,提出了对应的防护技术手段。研究发现:深海条件下桥墩主要受上游径流和潮汐两种水力作用影响,并在桥墩两侧产生尾流旋涡和冲刷坑;监测结果表明在桥墩施工期间水流规律紊乱,施工后期水力对河床冲刷速率基本稳定在4mm/d,在监测周期8个月内,3~#、7~#桥梁平均冲刷深度分别为2.23,1.82 m,仅达到理论冲刷深度的8%~10%,说明在桥梁运营中河床还会受到局部冲刷作用;此外,本文提出了针对深水环境下结合主动防护和水流动能减速两类防护技术方案,以期为深海环境下桥梁墩柱的防冲刷技术提供一定参考和数据支撑。  相似文献   

13.
采用设置沉井基础的海中桥墩,其周围应有防止冲刷的设备。明石海峡大桥主塔基础选用抛石防护,本文根据水深潮急的条件,对抛石防护所作为渗透模型试验,海底质的抗冲刷性试验,进行3号主塔墩基的防护设计,在施工中对渗透进行观测并与模型试验作对比,以确认防护的可靠性,还探讨了沉井周围的水面坡度,抛石厚度,透水系数以及作用下海底质的渗透流速等关系的观测结果。  相似文献   

14.
桥梁墩台冲刷会大大影响桥梁基础的稳定,威胁桥梁自身安全。该文在简要分析国内外桥墩冲刷研究的基础上,对桥梁一般冲刷和局部冲刷的计算方法进行介绍。根据阿什河哈尔滨城区段河道水文、水流、泥沙、地质特征和桥梁参数,选择了包达尔可夫公式对影响河道行洪较大且等级较高的公路桥梁和铁路桥梁进行桥墩冲刷计算。最后,根据计算结果对不同桥梁提出扩孔和桥墩防护措施建议。  相似文献   

15.
国内桥墩局部冲刷研究的主要成果   总被引:1,自引:0,他引:1  
桥墩周围的局部冲刷是一个有建筑物条件下水流的旋涡系与土质相互作用的结果。许多科技工作者从现场实测资料、模型试验资料建立经验公式;从研究桥墩周围冲刷坑水流结构,力图从理论上建立计算公式。近年来,桥墩周围局部冲刷的理论研究、模型试验及现场实测资料的分析,不同河床质的桥墩局部冲刷计算方法,国内都有新的进展,新的计算方法。  相似文献   

16.
我国跨海大桥的数量越来越多,桥墩位于海水中会对海水的运动产生影响,同时海水又会对桥墩造成冲刷。为了研究海水环境下桥墩抗冲刷技术,从桥墩基础局部冲刷机理的研究入手,基于A跨海公路大桥主跨桥墩防冲刷工程,对桥墩的主动和被动综合防冲刷技术及其应用效果进行了研究。研究成果表明:根据海水运动是否带动机床泥沙运动可将海水对桥墩的冲刷分为清水冲刷和动床冲刷,当海水行近流速很小时,河床几乎不受海水冲刷,当行进流速大于v_0′时,河床受到清水冲刷作用;当行近流速大于v_0时,河床受动床冲刷;桥墩受海水的冲刷与海水行近流速和河床泥沙粒径等均呈正相关性;依据抗冲刷技术的原理不同可将桥梁墩柱的防冲刷技术分为主动防护和被动防护;对A跨海公路大桥河床的监测成果表明,基于主动防护(墩前牺牲桩)和被动防护(抛石)的综合治理方案能非常有效地对桥墩起到防护作用。  相似文献   

17.
为预测圆柱形桥墩周围的局部冲刷坑形态和发展,基于计算流体动力学和泥沙运动理论开展了桥墩周围局部冲刷的三维数值模拟。首先使用雷诺时均Navier-Stokes方程和标准K-ε湍流模型对圆柱形桥墩周围三维复杂流场进行数值模拟,将床面瞬时切应力作为泥沙起动及运输的水动力学条件,计算出床底泥沙的单宽体积输沙率,以此为基础得到河床高程坐标的瞬时变化;再采用边界自适应网格技术修改动边界计算域网格,计算得到圆柱形桥墩周围局部冲刷坑的演化过程。结果表明:桥墩周围局部冲刷三维数值模拟结果与试验结果基本一致,数值模拟方法能用来预测圆柱形桥墩周围的局部冲刷情况。  相似文献   

18.
由于现有桥墩局部冲刷深度计算公式的准确性和普适性不足,对代表性公式进行对比是指导不同地区桥墩基础埋深设计的有效措施。广泛收集了国内外公开的桥墩局部冲刷原型观测数据,对中国规范65-1修正式和65-2式、俄罗斯规范公式及美国规范HEC-18式和S/M式在不同水流、泥沙及桥墩参数条件下的适用性进行分析。结果表明:现有公式在清水冲刷和过渡墩条件下的预测性能较差;中俄规范公式在清水冲刷及床沙相对粒径小于25时,以及中国65-2式及俄罗斯公式在水深小于1 m时应用均不安全;美国规范公式应用于砾石及卵石河床、水深1~5 m、相对粒径小于400、相对水深小于1.4 m等工况将不经济和存在较大不确定性。将所有公式用于柴达木盆地典型桥墩的局部冲刷深度计算并与实测值进行了对比分析,将所有公式用于柴达木盆地典型桥墩的局部冲刷深度的计算并与实测值进行对比分析,发现该地区桥墩的局部冲刷深度小于其他相似水沙条件下的桥梁,最合适依据中国65-2式进行桥墩局部冲刷深度的设计。上述结果可为不同水文地质地区桥墩局部冲刷深度的合理预测提供依据。  相似文献   

19.
为提高桥墩冲刷深度监测的经济性与便利性,提出一种基于动力特征识别的桥墩冲刷状态分析理论。该理论首先基于结构自振频率与振型,对其合理筛选后转换得到能反映桥梁状态的结构柔度矩阵,基于该结构柔度矩阵得到反映关注方向结构刚度的"计算结构位移差",将其作为桥墩冲刷识别参数。进而利用参数分析得到该冲刷识别参数与不同桥墩冲刷深度之间的理论定量关联,同时利用桥梁检测时获得的结构实际动力特性和实际取值,以及预先得到的"计算结构位移差"与冲刷深度之间的关系进行反演计算,得到了桥墩冲刷此时的反演深度。最后以简支梁桥为示例,基于American Petroleum Institute(API)规范所推荐的计算公式建立多方向的桩土弹簧模型,利用逐步移除相应弹簧单元模拟桥墩冲刷行为,演示了所提出的基于动力特性识别的桥墩冲刷状态分析理论的具体应用方法与步骤,并给出该方法的应用前提。研究结果表明:反演得到的桥墩冲刷深度具备一定的准确性,而多桥墩之间的耦合性可利用拟合公式进行修正;该方法可借助常规桥检项目对桥墩冲刷状态进行定性及定量分析,具备计算逻辑严密准确、监测设备便利经济的优点,在动力特征准确识别的基础上,可准确预测桥墩冲刷深度。  相似文献   

20.
研究江顺大桥所处河道河床演变及桥墩冲刷,为工程建设方案的实施提供依据。通过原型实测资料来分析江顺大桥附近水域的水沙特点,在此基础上进行河床演变分析,针对江顺大桥工程所处河道的设计水文组合条件,采用《公路工程水文勘测设计规范》推荐的公式计算桥墩冲刷深度,并按断面平均流速、墩前行近流速和主槽流速建立动床物理模型进行桥墩的局部冲刷试验,研究桥墩极限冲刷坑的深度和范围。结果表明江顺大桥桥址处河床会缓慢回淤,物模试验与理论计算基本吻合,理论计算结果偏安全。上述研究可为江顺大桥基础设计及冲刷防护提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号