首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
汽车行驶靠发动机提供动力,而发动机的工作性能与点火系统的工作状况有极大的关系。本较系统地分析了我国汽车上所使用的传统点火系统的组成,功用,故障及故障的诊断方法,对有效地排除故障具有一定的实践意义。  相似文献   

2.
对柴油机燃用生物柴油-0号柴油混合燃料的NO_x和Soot排放特性进行了仿真研究。在柴油机参数不作任何改变的情况下燃用体积分数分别为10%,20%,30%,40%和50%的生物柴油混合燃料,与原机的NO_x和Soot排放特性进行对比。研究表明:随着混合燃料中生物柴油体积分数的增加,柴油机Soot排放降低,NO_x排放增大。EGR的引入使柴油机NO_x排放降低,同时也使Soot排放增加。在1 800r/min中低负荷工况下,大比例生物柴油-0号柴油混合燃料应用于柴油机时,可通过调节EGR率使得柴油机NO_x和Soot排放都控制到与原机相当。  相似文献   

3.
对乖型柴油机燃用纯柴油、体积混合比例为1:9的天然气合成油(GTL柴油)与柴油混合燃料(G10)、体积混合比例为1:9的生物柴油与柴油混合燃料(BD10)、纯GTL柴油(G100)及纯牛物柴油(BD100)5种燃料的动力性、经济性及燃烧特性进行了研究.结果表明,BD10、G10与纯柴油有相似的燃烧特性,额定转速F G100的缸内工作压力增大,BD100的缸内工作压力显著降低;G10油耗较之BD10降低2.43%,功率较之BD10平均高2.78%;与燃用纯柴油的油耗相比,G100平均降低2.62%,BD100平均高出13%;除NOx排放外,生物柴油在降低CO、HC、PM的排放上均有所改善.  相似文献   

4.
This study aims to investigate the combustion characteristics of mixed fuel of liquefied propane gas (LPG) and biodiesel under compression ignition (CI) in an effort to develop highly efficient and environmentally friendly mixed fuelbased CI engines. Although LPG fuel is known to be eco-friendly due to its low CO2 emission, LPG has not yet been widely applied for highly efficient CI engines because of its low cetane number and is usually mixed with other types of CI-friendly fuels. In this study, a number of experiments were prepared with a constant volume chamber (CVC) setup to understand the fundamental combustion characteristics of mixed fuel with LPG and biodiesel in two weight-based ratios and exhaust gas recirculation (EGR) conditions. The results from the current investigations verify the applicability of mixed fuel of LPG and biodiesel in CI engines with a carefully designed combustion control strategy that maximizes the benefits of the mixed fuel. Based on the results of this study, ignition is improved by increasing the cetane value by using higher blending ratios of biodiesel. As the blending ratios of biodiesel increased, CO and HC decreased and CO2 and NOx increases.  相似文献   

5.
柴油机在高原地区燃用混合燃料的试验研究   总被引:1,自引:0,他引:1  
在高原地区对1台4100QB—2柴油机燃用生物柴油与柴油不同掺混比的混合燃料进行了台架试验。分析了混合燃料的物性,根据其物性和掺混比计算出当量燃油消耗率。对比分析了柴油机燃用混合燃料的有效热效率、机械效率和负荷特性。试验结果表明,在高原地区,柴油中加入体积比为10%~30%的生物柴油,柴油机的经济性有明显改善。  相似文献   

6.
Recently, biodiesel has emerged as an alternative fuel for achieving low-temperature combustion (LTC). Several articles in the literature have showed that oxygenated biofuels, including biodiesel, can improve combustion stability under high exhaust gas recirculation (EGR) operation, which is considered to be necessary for the removal of nitric oxides (NOx). The objective of this study was to investigate the performance and emissions of 20% biodiesel blended diesel fuel (B20) at various intake pressures and oxygen concentration levels to characterize the fuel for LTC application. The experimental investigation of B20 was carried out using a single-cylinder engine (SCE) at 1400 rpm and 50% load condition. A set of critical flow orifices with synthetic EGR was employed to simulate various intake pressures and EGR levels. The behavior of the B20 was first characterized under various intake conditions. The results showed that with high oxygen intake, B20 exhibited combustion and emission levels that were very similar to conventional diesel. However, B20 reduced combustion deterioration while exhibiting lower carbon monoxide (CO) and hydrocarbon (HC) emissions than diesel under low oxygen intake conditions.  相似文献   

7.
随着燃料电池产品化的逐步实现,相关的标准体系必须健全。标准作为检测和认证的依据,对于引领和规范产业的发展具有重要意义。本文对燃料电池行业标准制定情况进行综合分析,梳理国内外燃料电池相关标准组织,归纳我国燃料电池标准体系基本情况,分析我国燃料电池标准的不足,并对其完善提出相关建议。  相似文献   

8.
《时代汽车》2011,(4):104-105
节能减排是国家的大政方针,促进商用车降低油耗是好事。但是,交通部单独搞一个燃料消耗检测办法,与工信部的有关管理产生了重叠,也与国家实施的分阶段排量限值标准相矛盾,会给汽车企业带来不必要的负担。  相似文献   

9.
随着国内经济的发展,人民生活水平不断提高,轿车已经作为代步工具,逐渐走进寻常百姓家。随着车辆的增多意外情形也不断增多,旅游户外车辆涉水情况就是其中之一,涉水车辆未辨明情况状态下,轻易不要启动车辆,否则会造成车辆更大伤害,同时还是影响保险赔付,一些情况下可以通过简单的判断就可启动车辆,不会对车辆造成更大伤害。文章针对未启动浅水淹车实例,介绍能够使用简单工具快速判断车辆状态,帮助车辆在救援不便时快速脱困,具有一定的实际意义。  相似文献   

10.
Road accidents are the main leading cause of death, and more than half of people killed in road accidents are motorcyclists, pedestrians, and bicyclists. In developing countries, the share of motorcycles is very high in the traffic stream, which results in an increased number of accidents. Nonetheless, a high share of motorcycles and risky riding behavior of motorcyclists raise notable threats to other road users as well as themselves. Segregating motorcycles from the main traffic stream by providing an Exclusive MotorCycle Lane (EMCL) is reported as one of the strategies to improve motorcyclist's safety and overall road safety. Although EMCLs are successfully running in some Asian countries like Malaysia, Taiwan, and Indonesia, and have reported reducing motorcycle accidents, existing literature related to such lanes is limited and lacks combined contemplation of various design factors. Therefore, a systematic review of studies related to EMCL was carried out in the present paper using the PRISMA approach. The review was majorly divided into the following three categories viz., geometric design elements of EMCL, motorcyclist's flow characteristics on EMCL, and traffic control measures for EMCL to highlight the research lacunas in this field. The present study aims to cast light on the need for specific geometric design standards for EMCL and to assess the safety impact of segregating motorcyclists from other mixed traffic. The review highlights that the design standards for EMCL should be based on the motorcycle's characteristics, as it varies from other vehicle categories in terms of riding behavior and the physical properties of the motorcycle.  相似文献   

11.
This study was focused on experimental comparisons of the effects of various vehicle certification modes on particle emission characteristics of light-duty vehicles with gasoline, diesel, LPG, and low-carbon fuels such as bio-diesel, bioethanol, and compressed natural gas, respectively. The particulate matter from various fueled vehicles was analyzed with the golden particle measurement system recommended by the particle measurement programme, which consists of CVS, a particle number counter, and particle number diluters. To verify particle number and size distribution characteristics, various vehicle emission certification modes such as NEDC, FTP-75, and HWFET were compared to evaluate particle formation with both CPC and DMS500. The formation of particles was highly dependent on vehicle speed and load conditions for each mode. In particular, the particle numbers of conventional fuels and low-carbon fuels sharply increased during cold start, fast transient acceleration, and high-load operation phases of the vehicle emission tests. A diesel vehicle fitted with a particulate filter showed substantial reduction of particulate matter with a number concentration equivalent to gasoline and LPG fuel. Moreover, bio-fuels and natural gas have the potential to reduce the particulate emissions with the help of clean combustion and low-carbon fuel quality compared to non-DPF diesel-fueled vehicles.  相似文献   

12.
This research work aims to study the aspects of using biodiesel or FAME as a component blended in diesel fuel for common-rail DI engine technology. The specific engine experiments were designed for LD commercial engine [Toyota 2KD-FTV] to understand engine combustion process, engine performance and thermal efficiency when applying FAME blended fuel. In addition, the exhaust emission in HD diesel engine [HINO J08E] was evaluated by standard HD engine emission ESC and ELR test cycles. Furthermore, the severe 400-hour of HD engine durability tests for determining the limitation on using FAME blended fuel, have been conducted with B0, B10, B20 and B50. The result shows that using of FAME blended fuel in the HD common-rail DI engine, can be applied with some guidelines experimentally discovered by this research such as filter plugging that may occur when the content of biodiesel is up to 20 % or higher, and the critical fuel injector surface polishing wear, can be observed from B50 sample. In general, the higher biodiesel content will contribute to lower power output as well, thus too high biodiesel content will cause low engine power output.  相似文献   

13.
This study was performed to clarify criteria for cavitation inception and the relationship between flow conditions and cavitation flow patterns of diesel and biodiesel fuels. The goal was to analyze the effects of injection conditions and fuel properties on cavitating flow and disintegration phenomena of flow after fuel injection. To accomplish this goal, it was utilized a test nozzle with a cylindrical cross-sectional orifice and a flow visualization system composed of a fuel supply system and an image acquisition system. In order to analyze the rate of flow and injection pressure of the fuel, a flow rate meter and pressure gauge were installed at the entrance of the nozzle. A long distance microscope device equipped with a digital camera and a high resolution ICCD camera were used to acquire flow images of diesel and biodiesel, respectively. The effects of nozzle geometry on the cavitating flow were also investigated. Lastly, a detailed comparison of the nozzle cavitation characteristics of both fuel types was conducted under a variety of fuel injection parameters. The results of this analysis revealed that nozzle cavitation flow could be divided into four regimes: turbulent flow, beginning of cavitation, growth of cavitation, and hydraulic flip. The velocity coefficient of diesel fuel was greatly altered following an increase in flow rate, although for biodiesel, the variation of the velocity coefficient relative to the rate of flow was mostly constant. The cavitation number decreased gradually with an increase in the Reynolds number and Weber number, and the discharge coefficient was nearly equal to one, regardless of cavitation number. Lastly, it could not observe cavitation growth in the tapered nozzle despite an increase in fuel injection pressure.  相似文献   

14.
面对能源短缺和环境污染的双重挑战,交通领域的转型升级不可避免。本文结合未来车用动力系统的发展趋势,对交通运输领域中应用的多种先进动力系统、清洁能源及替代燃料进行综述和评价,包括目前主要使用的传统液态化石燃料即汽、柴油及先进内燃机技术,清洁替代燃料(如生物燃料、天然气合成油(GTL)燃料、电转液(PTL)燃料、液化天然气(LNG)等),以及电气化动力系统(包括混合动力、纯电动和燃料电池)等,并着重讨论液体燃料。壳牌认为没有一种单一的解决方案可以解决复杂的能源问题,未来交通能源结构将呈现多种能源并存的特点,并分别适用于不同的场景。该文还介绍了壳牌近期基于不同政治、经济和社会发展程度提出的3种远景(壳牌“高山”、“海洋”和“天空”远景),提出壳牌对未来车用能源领域转型脱碳发展情景的思考。  相似文献   

15.
赵捷 《汽车电器》2010,(12):31-34
随着汽油价格不断上涨,环保要求尾气排放标准的升高,LPG燃气汽车应用更加广泛。详细介绍LPG双燃料汽车结构和工作原理,有助于车主安全使用LPG双燃料汽车,同时为双燃料汽车修理技师提供必要的技术支持。  相似文献   

16.
能源和环境问题推动了新能源汽车的开发和使用,乙醇作为替代燃料之一逐渐引起了人们的重视。通过一款4气门灵活燃料乙醇汽油发动机在3种比例E10,E50,E90下的热力学计算,对发动机燃烧乙醇汽油的工作过程进行了工作特性计算研究。着重对最大扭矩工况下发动机燃烧乙醇汽油混合燃料时压缩比、对点火提前角、进气门迟闭角及空燃比耦合作用下的发动机工作过程进行优化计算。对3种燃料进行对比分析,对整机性能做出预测。为优化汽油机结构和进一步的三维计算分析提供了依据。  相似文献   

17.
张斌 《汽车电器》2009,(8):34-36
电喷发动机怠速不稳,容易导致发动机熄火和车辆振动。本文以一辆丰田锐志2.5轿车怠速不稳为例,从怠速控制的功能、构造和工作原理出发,介绍故障诊断与排除方法,并分析其故障原因。  相似文献   

18.
利用B100(纯生物柴油)、B50(50%体积生物柴油和柴油混合)、B20(20%体积生物柴油和柴油混合)等燃料分别对2辆配置了增压中冷车用直喷式柴油机的大客车进行了发动机排放特性试验和整车道路试验。试验结果表明,B100、B50和B20燃料均可以有效降低HC、CO、PM和烟度排放,但动力性下降、油耗率上升、NOx排放有明显增加;燃用B20燃料可以保证在降低排放的同时动力性、耗油率变化不大,因此该种掺烧方式比较适宜。  相似文献   

19.
In this study, correlation between vehicle fuel efficiency and total fuel energy consumption is analyzed to support the energy consumption and greenhouse gas (GHG) emissions reduction master plan in Korea. The background and highlights of recently amended fuel economy regulations and fuel efficiency labeling standards in Korea are also introduced. 18 representative vehicle groups, classified by class, type, size, and fuel, are selected by investigating vehicle distribution statistics based on market penetration and registration data sets in order to reflect and predict total fuel energy consumption in the overall ground transportation sector in Korea. Validity of the vehicle survival patterns modeled and vehicle classification rules are confirmed by comparing national fuel energy consumption statistics to the total amount of fuel consumed by each selected representative vehicle group. The latter figures are approximated from representative number of registrations, weighted average fuel economy, and average annual distance traveled.  相似文献   

20.
The objective of this experimental study is to investigate the characteristics of the size distribution and the number concentration of PM (particulate matters) emitted from the diffusion flame of a boiler burner, which has the same type of combustion as a diesel engine. This study is performed to investigate the emission characteristics of nanoparticles generated from diffusion combustion in diesel fuel, and it considered fuel factors and the reaction characteristics of the nanoparticles on the DOC (Diesel oxidation catalyst). The factors examined in this experiment included the sulfur content in the fuel, the blend of the diesel fuel containing biodiesel and bio-ethanol, and the concentration of engine oil (0.1% and 1.0%) blended with diesel fuel. The particle size distribution of the nanoparticles exhausted from the boiler burner was measured by an SMPS (scanning mobility particle sizer). The number concentration of PM that were smaller than 70 nm in diameter greatly increased in the rear of the DOC when fuel containing 250 ppm of sulfur was used. The experiment also suggested that the particle number concentration in both the front and rear of the DOC was lower when ULSD (ultra low sulfur diesel) fuel blended with biodiesel and bio-ethanol, which are oxygenated fuels, was used than when only ULSD fuel was used. The higher the content of engine oil in the fuel, the higher the particle number concentration was in the front and rear of the catalyst. When the first dilution air temperature is increased from 30°C to 180°C, the nanoparticle number concentration dramatically dropped in the rear of the catalyst when fuel containing 250 ppm of sulfur was used, while the particle size distribution remained almost the same when the fuel with engine oil was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号