首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
高RAP掺量的再生沥青混合料的长期路用性能成为当前沥青路面再生技术关注的焦点。在室内设计85%RAP掺量的再生沥青混合料,采用长期烘箱加热法在85℃烘箱加热5 d和10 d对其进行模拟老化,然后采用动态蠕变试验、半圆弯曲试验和冻融劈裂试验对再生混合料的路用性能进行评价,结果表明:长期老化作用下,再生混合料的抗车辙性能增强,低温抗裂性能和抗水损害性能下降;与新沥青混合料相比,再生混合料在长期老化作用下具有较大幅度的抗车辙性能提升和低温抗裂性能下降,其抗老化能力较差。如何进一步提升再生混合料的长期路用性能还需要更多的研究和探索。  相似文献   

2.
冯亮  郑茂营 《路基工程》2023,(2):107-113
通过变化RAP掺量为20%~50%试验,研究常规未知新旧沥青融合状态与模拟新旧沥青100%融合状态下热再生混合料高温及低温性能、水稳定性、抗疲劳性能。结果表明:两种融合状态下,热再生混合料抗车辙性能均随RAP掺量增大而提高,低温抗裂性能和水稳定性均随RAP掺量增大而降低。新旧沥青融合程度和RAP掺量对热再生混合料的高温及低温性能、水稳定性、抗疲劳耐久性能有显著影响。与常规拌和工艺相比,新旧料100%融合工艺制备的热再生混合料其高温稳定性稍差,但具有更好的低温抗裂性能、水稳定性和抗疲劳耐久性能,配合比设计时应考虑新旧沥青融合程度对高RAP掺量热再生混合料路用性能与抗疲劳耐久性能的影响。  相似文献   

3.
依托"特殊气候条件高RAP掺量热再生混合料耐久性研究"项目,基于室内路用性能试验、APA、MMLS1/3、四点弯曲试验系统研究了纤维硅藻土热再生混合料的长期使用性能。研究结果表明,掺加纤维可显著改善热再生混合料的低温抗裂性能和抗疲劳性能,以硅藻土为原材料的纤维硅藻土复合改性剂能够提高热再生混合料的冻融劈裂试验强度比,减小混合料受到冻融循环水损害之后劈裂抗拉强度的降低幅度。在水-高温-荷载耦合作用下的综合路用性能排序依次是:玄武岩纤维+13% 硅藻土SBS热拌沥青混合料聚酯纤维+13% 硅藻土木质素纤维+13% 硅藻土SBS热再生混合料,纤维硅藻土复合改性热再生混合料在水-高温-荷载耦合作用下有更强的适用能力。确定了最佳的纤维和硅藻土掺配比例为0.35% 纤维+13% 硅藻土,建议在高温高湿环境优先选用0.35% 玄武岩纤维+13% 硅藻土复合改性方案来改善高RAP掺量热再生混合料的抗车辙和水损害性能。  相似文献   

4.
为了对比分析热拌与温拌再生沥青混合料使用性能,开展了不同RAP掺量的热拌与温拌再生沥青混合料的高温稳定性、低温抗裂性能、水稳定性、抗压回弹模量及劈裂强度等使用性能试验。试验结果表明:与热拌再生沥青混合料相比,温拌的高温性能优势明显,但低温抗裂性能略差,且随RAP掺量的增加,无论是热拌还是温拌,其高温性能均提高显著,而其低温抗裂性能却不断降低;两种混合料的15℃和20℃抗压回弹模量与15℃劈裂抗拉强度均随RAP掺量的增加而增大,相同RAP掺量下,热拌值略大于温拌值。总之,除低温抗裂性随RAP掺量的增加稍减小外,其它各项性能指标均有不同程度地提高。  相似文献   

5.
基于厂拌热再生技术,采用Superpave设计方法,对RAP掺量为30%的高掺配率再生沥青混合料进行了配合比设计,并利用车辙试验测试其高温性能、低温弯曲试验测试其低温性能,浸水马歇尔试验和冻融劈裂试验测试其水稳定性,结果表明:高掺配率再生沥青混合料的性能均满足现行公路沥青混凝土路面施工技术规范的要求,可以将其大规模应用在实体工程中.  相似文献   

6.
在保证RAP再生沥青混合料路用性能的同时,如何合理利用废旧沥青混合料,对推进废物再生利用具有重大的意义。文章通过对石安高速上面层刨铣料进行抽提筛分试验,评价RAP材料的相关性能;确定了RAP掺量为20%、30%、40%时再生混合料最佳沥青用量,然后开展浸水马歇尔试验、车辙试验、小梁低温弯曲试验、冻融劈裂试验及再生沥青混合料疲劳试验;同时系统地分析了不同RAP掺量对热再生沥青混合料的疲劳性能、高温稳定性、水稳定性以及低温抗裂性的影响规律。研究表明:回收旧沥青的黏度值、延度及软化点均呈现下降趋势;不同的掺配满足各体积指标要求4.75mm的通过率和最佳沥青用量。  相似文献   

7.
为突破高RAP掺量厂拌热再生混合料RAP掺配比例低、低温性能、水稳定性和耐久性差的技术瓶颈,以法国高模量沥青混合料性能评价体系为依托,基于Terminal blend橡胶沥青与高模量剂复配技术进行了Terminal blend与PR.S复合改性沥青性能试验、Terminal blend与PR.S复合改性50%RAP掺量热再生混合料EME2设计、车辙试验、低温弯曲试验、浸水马歇尔试验、冻融劈裂试验,及MMLS1/3和四分点加载疲劳试验,研究了TB+高模量复合改性沥青用于高RAP掺量热再生混合料的可行性和耐久性。试验结果表明,12%TB+0.6PR.S、18%TB+0.6PR.S、22%TB+0.6PR.S 3种TB胶粉改性沥青与高模量剂复配方案下改性沥青的高低温性能均可达到甚至优于SBS改性沥青,工程实践中可优先采用18%TB+0.6PR.M复合改性方案掺配比例来改善沥青混合料的高低温性能。基于TB与高模量复配技术所生产的耐久性高RAP掺量热再生混合料具有沥青用量高、模量高、空隙率小、抗车辙性能和抗疲劳性能优良的技术特点;Terminal blend橡胶沥青与高模量剂复合改性高RAP掺量热再生混合料抗高温、重载条件下的剪切变形能力和剪切疲劳破坏强度均优于SBS热再生混合料,TB与高模量复配方案是改善高RAP掺量热再生混合料耐久性和极端气候条件下耐候性的有效途径。  相似文献   

8.
为充分利用旧沥青混合料(RAP),减少建筑垃圾对土地的占用及环境污染,文中利用玄武岩纤维力学性能好、与沥青相容性好的特点改善温拌再生混合料的路用性能,通过对再生混合料进行矿料级配设计及路用性能研究,确定沥青最佳用量、再生剂和温拌剂合理掺量;通过对再生混合料进行高温抗车辙试验、低温抗裂试验、抗水毁能力试验,研究不同玄武岩纤维掺量对温拌再生混合料路用性能的影响。结果表明,玄武岩纤维掺量为0.3%时,温拌再生混合料的高温抗车辙、抗水毁及抗渗水能力最优;纤维掺量为0.4%时,温拌再生混合料的低温抗开裂能力最优。  相似文献   

9.
为提升厂拌热再生沥青路面的使用性能,探索应用稳定型橡胶沥青改善再生混合料综合性能。在试验对比70#道路石油沥青、SBS改性沥青、传统湿法橡胶沥青以及稳定型橡胶沥青等胶结料性质的基础上,基于高模量混合料组成原理对橡胶沥青再生料进行了配合比设计。通过基本性能试验、高温车辙、低温弯曲、冻融劈裂及半圆弯曲试验探究了稳定型橡胶沥青再生料的路用性能。结果表明:稳定型橡胶沥青在针入度、软化点和弹性恢复率等指标方面与SBS改性沥青接近,施工和易性和存储稳定性显著优于传统湿法橡胶沥青;在旧料掺量低于50%的条件下,稳定型橡胶沥青再生混合料的各项路用性能均满足规范要求,高温、低温稳定性及水稳定性得以兼顾;随着旧料掺量的提高,稳定型橡胶沥青再生混合料动态模量、高温抗车辙能力、抗水损能力提高,低温稳定性及抗裂性能有所下降。  相似文献   

10.
对不同掺量废旧沥青路面材料(RAP)的热再生沥青混合料的高温、低温、抗水损害及耐久性能进行试验研究。结果表明,当RAP掺量超过25%时,混合料最佳油石比逐渐增大,需添入较多新沥青,且新添入沥青和集料的比值与RAP掺量基本呈线性递增关系;随RAP掺量的增加,动稳定度呈幂函数增加,低温抗弯拉强度增大,抗弯拉应变逐渐降低;当RAP掺量不超过30%时,各组RAP热再生沥青混合料都能达到较好的抗水损坏能力及耐久性能。  相似文献   

11.
《中外公路》2021,41(4):287-291
采取室内模拟老化方法得到了钢渣旧沥青路面材料(RAP),制备了掺量为0、10%、20%、30%、40%和50%的6种热再生钢渣沥青混合料,并测试了其体积性能、水稳定性能、高温稳定性能和低温抗裂性能。结果表明:RAP的掺入不会对沥青混合料的体积性能造成影响。热再生钢渣沥青混合料的飞散损失值随RAP掺量的增加而增大。随着RAP掺量增加,热再生钢渣沥青混合料的水稳定性呈线性减弱,高温稳定性能呈线性提升。热再生钢渣沥青混合料的低温抗裂性能随RAP掺量增加显著降低。综合各项性能参数,热再生钢渣沥青混合料中RAP掺量应不高于30%。  相似文献   

12.
张志萍  董建明 《公路》2023,(9):80-87
大掺量RAP再生沥青混合料路面具有良好的环境效益,但由于其抗裂性差而限制其推广应用。为改善大掺量RAP条件下再生沥青混合料易开裂的特性,将玻璃纤维加入到再生沥青混合料中,制成玻璃纤维增强再生沥青混合料,并通过间接拉伸试验、动态模量试验、水稳定性试验和汉堡车辙试验等测试评价了纤维加入后再生沥青混合料的性能,并对加入后的再生沥青混合料微观形貌进行表征。结果表明,与不加玻璃纤维的再生沥青混合料相比,玻璃纤维的加入起到桥联加筋的作用,使再生沥青混合料抗拉性能以及低温抗裂性得到改善,同时也使混合料的抗车辙以及抗水损害性能得到提高。这将有利于延长再生沥青混合料的使用年限,有利于大掺量再生沥青混合料的推广应用。  相似文献   

13.
段号炎  慕海瑞  杨锐 《中外公路》2011,31(1):221-224
研究添加了PR PLASTS抗车辙剂的沥青混合料的各项性能,对抗车辙剂不同掺量下的沥青胶结料进行基本性能试验,包括高温车辙、低温弯曲和冻融劈裂试验,并介绍了PR PLASTS作用机理及施工工艺的控制.结果表明:在沥青混合料中掺入PR PLASTS抗车辙剂后,可以显著提高沥青混合料的高温抗车辙能力,对沥青混合料的抗水损坏...  相似文献   

14.
通过现场加工SBS改性沥青,以AC-16级配沥青混合料进行目标配合比设计,在最佳油石比下,对不同掺量SBS改性沥青成品及其沥青混合料进行了冻融劈裂试验、浸水马歇尔试验、车辙试验和小梁低温弯曲试验,检验了其水稳定性、高温稳定性、低温抗裂性能。试验结果表明,AC-16级配沥青混合料SBS现场改性沥青改性剂的最佳掺量为5%,通过现场加工SBS改性沥青,水稳定性、高温稳定性、低温抗裂性及抗疲劳性表现良好,满足沥青路面使用要求。  相似文献   

15.
为了明确RAP掺量变化对中面层再生沥青混合料各路用性能的影响程度,本文通过大量的室内试验,系统研究了RAP掺量分别为0%、20%、30%、40%时,AC-20再生沥青混合料的高温性能、低温抗裂性能、水稳定性能和疲劳性能的变化规律,并对试验结果进行回归分析。研究结果表明:再生沥青混合料水稳定性能对RAP掺量敏感程度最大,低温抗裂性能和疲劳性能次之,高温性能再次之;再生沥青混合料的水稳定性能是否满足要求应作为确定RAP掺量的首要标准。  相似文献   

16.
为分析硅藻土改性沥青混合料的路用性能,针对硅藻土混合料进行了配合比设计,并对混合料进行了车辙试验、低温弯曲试验和浸水马歇尔、冻融劈裂试验,分析了不同硅藻土掺量时改性沥青混合料的高温、低温和水稳定性能。结果表明,适量的硅藻土可以明显改善混合料的高温抗车辙性、低温抗裂性和抗水损害性能,掺量过大会产生负面的影响,推荐最佳掺量为12%。  相似文献   

17.
《中外公路》2021,41(3):286-290
为研究热再生混合料相关性能和就地热再生加热工艺,该文选取级配类型为SMA-13和AC-13两种废旧沥青混合料(RAP),分别掺加90%SMA-13型RAP和85%AC-13型RAP进行热再生混合料设计。对两种热再生混合料进行车辙试验、低温小梁弯曲破坏试验、浸水马歇尔试验、冻融劈裂试验及渗水系数测试。结果表明:两种热再生混合料高温性能良好,低温性能也满足规范要求,但SMA-13热再生混合料低温性能改善并不明显;在水稳定性和防渗水性能方面,两种热再生混合料均能较好地达到规范要求,且SMA-13热再生混合料的防渗水性能非常好。此外,通过设计正交试验研究混合料再生过程中各环节加热温度,确定两种热再生混合料中旧沥青混合料、新沥青混合料及再生剂最佳加热温度分别为165、165和145℃。  相似文献   

18.
为提高寒冷地区大掺量温再生沥青路面施工质量,依托二广高速二连浩特至赛汉塔拉段公路工程项目,开展了室内温拌再生沥青混合料目标配合比和最佳油石比设计及路用性能测试,试验段生产配合比设计,试验段铺筑与施工总结等研究。结果表明:温拌再生剂的添加在保证其混合料路用性能的基础上可以有效增加RAP掺配比例,随着RAP掺配比例的增加,沥青混合料水稳性能和低温抗裂性能逐渐下降,高温抗车辙性能逐渐增强;大掺量温再生沥青混合料适合于中下面层等承重层,一方面可以有效避免上面层低温开裂和水损害,另一方面可以增强中下面层抗车辙能力;通过试验段的铺筑可以为寒冷地区大掺量温再生沥青路面施工提供一定的技术参考。  相似文献   

19.
采用低温蠕变、低温弯曲、约束试件温度应力和三分点加载疲劳试验从不同角度揭示了RAP掺量对热再生混合料低温抗裂性和抗疲劳开裂性能的影响,通过抗裂性能试验分析了木质素纤维、玄武岩纤维、橡胶粉、BRA岩沥青、SBR、硅藻土6种添加剂对高RAP掺量热再生混合料抗裂性能的改善作用。试验结果表明,随着RAP掺量增大,热再生混合料低温抗裂性和抗疲劳开裂性能均下降,低温抗裂性不足是制约厂拌热再生混合料增大RAP掺量的主要技术瓶颈,掺加6种添加剂后热再生混合料低温抗裂性能均有一定程度提高,抗疲劳性能显著增大,玄武岩和木质素纤维对热再生混合料低温性能和抗疲劳性能贡献最大,而BRA岩沥青效果最差,建议优先选择玄武岩纤维来改善高RAP掺量热再生混合料的抗裂性能。  相似文献   

20.
随着道路维修养护任务的增加,RAP材料再利用技术在国内得到了新发展。通过多组高温车辙试验、低温弯曲试验、浸水马歇尔试验、冻融劈裂试验及力学性能试验对不同RAP掺量下泡沫温再生沥青混合料路用性能进行分析,研究结果表明:RAP材料经过分档处理后,可以减小材料的不均匀性,有利于保持级配的整体稳定;随着RAP掺量的增加,泡沫温再生混合料高温稳定性迅速提高,力学性能增强,低温抗裂性下降,水稳定性先小幅增大后大幅减小,推荐泡沫温再生沥青混合料适宜的RAP掺量为30%,以满足公路养护经济适用性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号