首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
桥梁承台大体积砼水化热温度监测及数值分析   总被引:1,自引:0,他引:1  
文中运用三维有限元软件MIDAS/Civil对贵州大乌江特大桥的大体积砼承台,按照一次浇筑施工、冷却管布置、水流情况以及各种不同边界情况进行水化热温度场数值分析;并对影响水化热的内外部因素进行敏感性分析,得出大体积砼施工中相关参数的一般选择原则。  相似文献   

2.
斜拉桥主塔承台大体积混凝土施工水化热分析   总被引:1,自引:0,他引:1  
利用有限元程序对斜拉桥主塔承台混凝土施工水化热进行计算,并与实测温度场进行了比较,进一步分析了承台混凝土施工水化热变化的一般规律。  相似文献   

3.
在特大承台大体积混凝土施工时,水化热的控制是施工的重点和难点,对工程质量有比较大的影响。文章以实际工程为例,对特大承台大体积混凝土水化热情况进行了分析,然后针对性地提出了温度控制措施,有效降低了承台内外部的温度差异,避免混凝土结构出现裂缝。  相似文献   

4.
混凝土水化热引起的温度效应是导致混凝土箱梁早期发生开裂的主要原因之一,严重影响施工质量,成为困扰土木技术人员的难题。为此,对某大桥进行温度场试验,基于箱梁混凝土热传导理论,利用有限元数值分析软件ANSYS,建立该大桥混凝土箱梁块水化热分析的有限元数值模型,对该混凝土箱梁结构的水化热温度场产生的过程进行数值分析,并将仿真分析结果和现场实测数据进行对比,研究早期混凝土箱梁的温度场分布及其时变特点。研究结果表明,采取正确的热学参数,混凝土箱梁温度场有限元数值仿真能准确模拟混凝土箱梁水化热现场试验温度场的分布和发展过程。混凝土箱梁结构的水化热温度梯度规律明显,减小混凝土箱梁内外温度梯度是降低混凝土箱梁早期裂缝的关键。底板中部的温度高于靠近表面位置的达23. 1℃,这是因为底板厚度较大,水化热不宜扩散,因此在混凝土养护过程中要更加注意底板等大尺寸部位的散热。研究结果为混凝土箱梁结构的温度场分析方法提供理论依据,便于准确掌握混凝土箱梁的温度应力,明确受温度效应影响最大的位置,为施工过程中的混凝土箱梁的温度控制提供参考和借鉴。  相似文献   

5.
为研究大体积混凝土水化热温度场的分布规律,了解冷却水管的具体降温效果以及相关参数对降温效果的影响,以某大跨桥梁大体积混凝土承台为工程背景,采用有限元方法建立承台实体模型,模拟混凝土水化热温度场,分析冷却水管的质量流率和初始温度等参数对混凝土水化热温度场的影响。结果表明:混凝土浇筑后的水化热温度场总体呈现出先升后降的趋势,一般浇筑后2~3d达到温度峰值;布置冷却水管后,混凝土水化热的温度峰值降低了7%~31%,混凝土内总热量减少了约50%;改变冷却水管的质量流率对水化热温度场升温阶段的影响很小,对降温阶段的影响比升温阶段有所增大;降低冷却水初始温度可以加快水化热冷却速率,实际工程中,不必将冷却水温降得过低,保持在环境温度左右即可达到良好的冷却效果。  相似文献   

6.
针对多年冻土地区桩基施工中水泥水化热对桩周温度场的热扰动问题.进行考虑相变的三维非稳态热分析,通过有限元模拟计算,得出随时间变化桩周温度场变化规律及不同深度处随时间变化沿径向桩基温度场变化规律。结果表明:混凝土水化热对桩周围土体的热扰动大而且时间长,应采取措施减小混凝土水化热,从而达到减小冻土区桩基热扰动问题。  相似文献   

7.
大体积混凝土水化热施工期温度场及应力场仿真分析   总被引:1,自引:0,他引:1  
介绍了大体积混凝土水化热的有限元分析及其控制措施,结合鄂东长江大桥南主塔承台水泥混凝土浇筑工程,通过现场试验确定了混凝土配合比设计,利用有限元模型,提出了解决施工过程中水化热的具体措施,保证了鄂东长江大桥南主塔承台的顺利浇筑。  相似文献   

8.
利用有限元程序对连续刚构桥梁承台大体积混凝土施工水化热进行计算,将计算结果与实测温度场进行比较分析,验证计算结果的正确性,为今后类似工程的水化热计算及温度控制提供参考。  相似文献   

9.
利用有限元软件Midas/Fea对大体积水下混凝土承台进行温控分析,模拟边界条件、水文状况及施工过程等因素进行全程水化热温度场的仿真分析,为承台浇筑施工方法及降温措施提供借鉴参考。  相似文献   

10.
承台大体积混凝土水化热分析与施工控制   总被引:5,自引:0,他引:5  
结合援孟加拉国中孟友谊六桥主桥承台设计与施工,利用Midas/Civil有限元计算分析软件对承台大体积混凝土水化热进行仿真分析,掌握水化热变化规律及其应力影响,据此指导现场施工控制。结果表明:仿真分析很好地反映了水化热变化规律及其应力影响,混凝土质量优良,没有出现温度裂缝,可供类似大体积混凝土设计与施工借鉴。  相似文献   

11.
苏通大桥辅桥箱梁节段水化热效应的仿真分析   总被引:4,自引:1,他引:4  
结合实际工程,分析了大体积混凝土水化热是使其表面产生裂缝的主要原因之一。采用三维瞬态温度场理论,利用有限元程序ANSYS对苏通大桥连续刚构墩顶现浇块的水化热效应进行了数值模拟,分析了箱梁水化热温度场和应力场的分布规律。结果表明,水化热引起的温度应力使底板内外表面受拉,混凝土内部受压,这样的温度应力是自平衡的。水化热效应引起的早期温度应力是不容忽视的,提出了控制水化热温度及温度应力的合理建议,有一定的工程参考价值。  相似文献   

12.
通过对某寒冷气温下施工的斜拉桥承台大体积混凝土水化热进行数值模拟和现场监测承台水化热温度,对比分析低温冷却水和长冷却管管长对承台水化热温度发展变化规律的影响。研究结果表明,综合考虑混凝土入模温度、混凝土配合比、外加剂、冷却管的管径和布置形式以及混凝土养护方式等因素,采用低温冷却水和长冷却管管长方案,能有效避免大体积混凝土水化热温度产生裂缝,可为同类大体积混凝土在寒冷气温下施工提供参考。  相似文献   

13.
高强混凝土在大体积混凝土中应用时会产生大量的水化热,在混凝土中心位置形成一个高温带导致内外温差较大,从而使混凝土产生裂缝,因此研究在施工期的水化热温度场具有重要意义。以江西鄱阳湖大桥为工程背景,现场测试了П型主梁浇筑过程中的大量温度数据,通过分析得到了П型梁顶板混凝土对外界气温敏感,水化热对其影响较小;梁肋大体积混凝土在施工期由于水泥水化作用,不仅会在结构内部产生较高的温度,而且容易使混凝土表面与中心产生较大的温差,导致混凝土产生裂缝。因此,施工时应采取相应的温控措施,减小混凝土的水化热。  相似文献   

14.
以重庆某大桥主墩承台为对象,采用C40低温升低收缩磷渣大体积混凝土,利用有限元软件对其温度应力监测数值进行了仿真研究。结果表明:利用有限元软件,仿真计算低温升低收缩磷渣大体积混凝土水化热,可对混凝土水化热实际情况进行较好的模拟及预测。利用有限元软件,对大桥4#承台水化热进行仿真分析,通过对冷却管采取降温措施,发现在承台内部,最高温为71.25℃,最大的内外温差为18.15℃,水化热得到控制,说明采用冷却管降温可行。通过检测拆模后大桥承台的外观,发现无温度裂缝产生,说明采取合理措施控制大体积混凝土水化热温升,能有效控制温度裂缝的产生。  相似文献   

15.
高强混凝土在大体积混凝土中应用时会产生大量的水化热,在混凝土中心位置形成一个高温带导致内外温差较大,从而使混凝土产生裂缝,因此研究在施工期的水化热温度场具有重要意义.以江西鄱阳湖大桥为工程背景,现场测试了Π型主梁浇筑过程中的大量温度数据,通过分析得到了Π型梁顶板混凝土对外界气温敏感,水化热对其影响较小;梁肋大体积混凝土在施工期由于水泥水化作用,不仅会在结构内部产生较高的温度,而且容易使混凝土表面与中心产生较大的温差,导致混凝土产生裂缝.因此,施工时应采取相应的温控措施,减小混凝土的水化热.  相似文献   

16.
兰州深安黄河大桥主墩采用V型墩.V型墩构造复杂且局部混凝土几何尺寸较大,应进行水化热分析以避免施工过程中出现温度裂缝.水化热分析采用大型通用有限元程序ANSYS进行,先对V型墩结构进行热分析,然后将热分析得到的温度场作为体荷载施加到结构单元的节点上进行热一结构耦合场分析,最终得到结构的应力分布.水化热分析结果可指导V型墩施工方案的实施,并可为类似的工程提供有价值的参考.  相似文献   

17.
依托某双塔双索面梁斜拉桥,基于有限元软件MIDAS/Civil对大体积混凝土承台的水化热温度场进行了仿真模拟,详细研究了水化热温度场及混凝土内外温差等变化规律。并基于有限元研究成果,采取了大体积混凝土配合比优化设计、原材料预冷、预埋水管冷却、优化浇筑顺序及养护等多个温度控制措施。实践证明,上述措施可以有效控制混凝土水化热,提高混凝土施工质量,降低施工成本,从而获得良好的经济及技术效益。  相似文献   

18.
针对大跨连续刚构桥承台大体积混凝土结构施工过程中的水化热问题,利用有限元分析软件进行了模拟分析,并对承台施工过程中的水化热温度进行了细致的监测。经过分析,得出有限元的模拟计算结果与现场监测的温度变化趋势一致,与承台内部的最高温度相差约9%。计算模型中对流边界条件的选取、承台浇筑的分层方法、冷却管水流的模拟等与实际情况的差异是影响模拟精度的主要因素。通过不同测点布置形式可以得到混凝土内部的温度梯度分布,远离承台中心位置温度梯度较大,应采取良好的保温保湿措施防止温差下混凝土的开裂。施工过程采用计算、监测以及现场养护等综合技术措施,较好地避免了大体积承台混凝土施工期间温度裂缝的出现,确保了承台的施工质量。  相似文献   

19.
本文以池州长江公路大桥南岸主墩承台大体积混凝土水化热的温度控制为例,剖析和研究大体积混凝土设计、同时间监测大体积混凝土在施工作业和养护作业时,承台三维空间温度场梯度变化,进行数据采集分析,及时优化调整施工方案,并采取有效的养护办法,科学调控混凝土温度场梯度变动,避免因温度应力导致不必要的裂缝。  相似文献   

20.
结合苏村坝大渡河大桥承台的施工,利用Midas有限元计算分析软件对承台大体积混凝土结构的水化热进行分析,掌握水化热变化规律,提出控制大体积混凝土温差的措施,确保混凝土的施工质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号