首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
开孔分布是影响空腔流动的一个重要因素。为了对开孔空腔流动有更深的认识,采用大涡模拟(LES)的方法,以Suboff艇体母线建立二维模型,研究4种开孔分布对空腔流动阻力,频谱特性及内外流交换的影响。对计算结果的分析表明,由于艇体表面的压力分布不同,孔附近产生纵向压力差,促使空腔内外流动交换,增加主艇体首尾压差阻力,进而使得总阻力增大。计算结果表明艇体阻力增加与内外流交换的密切相关,开孔位于中部时总阻力增量最小,内外流增量最小,开孔均匀分布时引起内外流流动交换剧烈,阻力增量最大,而且开孔引起总阻力波动幅值增加,频率分布特性发生相应的改变,开孔使得大幅波动频带变宽,可以预测噪声强度增加,频带变宽。  相似文献   

2.
水下航行体因表面开孔产生的流噪声是总体噪声的重要部分,对其隐蔽性造成负面影响,而其噪声特性影响因素较多,开孔长宽比是其中一个典型参数。在现有阻力试验模型的基础上建立模型,采用RANS结合DES方法获得流场数据,并运用FW-H方程获得其声场信息。分析艇体开孔水舱内的流动现象,表明模型噪声的特征频率符合一般空腔规律,且与开孔长度有关;在长宽比为0.25时,其流噪声水平最低。最后结合简化模型作进一步验证。  相似文献   

3.
水下航行体因表面开孔产生的流噪声是总体噪声的重要部分,对其隐蔽性造成负面影响,而其噪声特性影响因素较多,开孔长宽比是其中一个典型参数。在现有阻力试验模型的基础上建立模型,采用 RANS结合DES方法获得流场数据,并运用FW-H方程获得其声场信息。分析艇体开孔水舱内的流动现象,表明模型噪声的特征频率符合一般空腔规律,且与开孔长度有关;在长宽比为0.25时,其流噪声水平最低。最后结合简化模型作进一步验证。  相似文献   

4.
带流水孔潜体流场数值模拟   总被引:10,自引:1,他引:9  
本文通过求解RANS方程,结合PISO算法与k-ω湍流模型,数值模拟了带有两种不同形式流水孔(纵缝式与格栅式)潜体的内外流场.数值模拟给出了流水孔流场的精细结构,计算并分析了潜体各个壁面上阻力成分的大小与成因.计算得到的流水孔阻力增量与试验值吻合较好.对计算结果的分析表明:流水孔引起的阻力增量主要集中在导流板与流水孔壁上;内部空腔壁上的阻力值是可以忽略的小量;涡旋流动主要集中在导流板之间;流水孔阻力系数随雷诺数的增加而趋于一稳定值.计算结果表明,本文中使用的方法可用于模拟流水孔内外流场.  相似文献   

5.
不同形式表面开孔水下回转体流噪声特性研究   总被引:2,自引:0,他引:2  
应用DES(Detached Eddy Simulation)湍流模型模拟表面开孔水下回转体在一定来流速度下非定常流体力学现象,分析开孔附近的精细流动结构及流场时频特性;结合FW-H模型计算开孔体流噪声,分析噪声频谱及总噪声级指向性特点。对两种方案开孔形式的回转体流场及流噪声特性进行对比。结果表明:其中的一个方案较另一方案阻力增加1%,脉动幅值也较大;两方案指向性相似,方案1的噪声级在各方向上较方案2约大4dB。频谱分析结果表明,造成方案1噪声相对较大的主要原因是孔穴流动的相互干扰。  相似文献   

6.
水下航行体借助于流水孔进排水实现上浮下潜,而众多流水孔会增加艇体阻力。本文针对水舱开孔对流场的影响问题,提出了长宽比、格栅角度、开孔位置三个变量,在已有阻力试验模型基础上,进行数值建模,采用SST k-ω两方程的RANS湍流模型进行计算。结果表明:开孔水舱内存在流体撞击水舱壁面-形成涡旋-内外流掺混等现象;相比较而言长宽比小于1时的阻力比大于1时要小;随着格栅与来流角度的增加,阻力呈先增后减趋势,在与来流成-45°角附近阻力性能好;表面压力为顺压梯度时阻力最大。  相似文献   

7.
表面开孔水下回转体流噪声数值模拟   总被引:1,自引:1,他引:0  
采用大涡模拟湍流模型模拟表面开孔水下回转体在一定来流速度下非定常流体力学现象,分析了开孔附近的精细流动结构及时频特性.结合边界元方法(BEM)模拟流噪声的频域特征,分析了噪声空间分布及指向性特点.结果表明,表面开孔对流场的影响主要发生在前部几个开孔,舱内流体与主流在这几个开孔中发生质量交换,在舱内前部发生明显的掺混.前部开孔的压力脉动主要来自于开孔壁面的非定常涡脱落;中部及后部开孔对壁面压力脉动影响较小,主要脉动频率为回转体尾涡脱落频率.回转体总噪声级具有明显指向性,沿垂直开孔矢量方向较大,回转体上表面方向噪声级普遍大于下表面方向噪声级,且正上方及正下方噪声级较低,总噪声级沿不同指向相差不大.  相似文献   

8.
基于CFD不同AUV艇体阻力性能研究   总被引:1,自引:0,他引:1  
俞强  魏子凡  杨松林  王保明 《船海工程》2014,(2):177-181,186
为了研究不同类型AUV艇体阻力性能特点以及十字舵和整流罩附体对总阻力的影响,在充分研究4种艇型型线的基础上,建立几何模型,选取标准k-ε,RNG k-ε,SST k-ω湍流模式,通过CFD对艇体进行阻力数值模拟。结果表明,十字舵引起的艇体阻力增加比例大约在10%~20%,且随着展弦比的增加而呈减小趋势,直径与艇体最大直径相当的整流罩引起的艇体阻力增加比例大约在40%~50%;流线型BLUEFIN阻力增加值随航速变化较大,而钝性BLUEFIN阻力增加值几乎不受航速的影响,AUTOSUB型AUV阻力性能最优,AUTOSUB和HUGIN适合中高速航行,REMUS和BLUEFIN适合低速航行。  相似文献   

9.
安装在潜艇上的首部水平舵位置对于潜艇在垂直方向的稳定性以及操纵性具有重大意义.本文首先通过Fluent 14.0计算Suboff模型的阻力以及DTMB舵型的升、阻力,仿真结果与实验结果吻合较好.然后计算带围壳舵Suboff潜艇和带首舵Suboff潜艇的阻力、升力特性,并比较了潜艇带首舵和围壳舵的升阻力特性差异,以及对艇体表面压力分布和尾部流场的影响.计算结果显示,相同舵角下,围壳舵和首舵阻力相差不大,围壳舵升力比首舵升力大.相同舵角下,潜艇总阻力相差不大,带首舵潜艇总升力、总力矩比带围壳舵潜艇总升力、总力矩大.围壳舵舵角的变化对艇体表面的压力变化影响相对首舵来说较小.围壳舵和首舵在较大舵角下,都会对尾水平舵产生显著影响.  相似文献   

10.
针对一双艉无球艏的中速船,采用SIMPLEIC算法和SSTk-ω湍流模型对原型和开孔引流模型进行数值模拟计算,探讨不同开孔形状、开孔尺寸和出流位置对船舶艉部流场特性和阻力的影响规律。计算结果表明:开孔引流在本船上未能实现有效减阻,但不同开孔参数下阻力变化规律明显;引流对船舶艉部流场分布影响显著,改善了艉轴处伴流场分布,对提高螺旋桨推进效率有益。  相似文献   

11.
为分析在低频段内船体两侧螺旋桨激励相位差对船体振动的影响,基于动刚度法建立水面船舶桨-轴-船体耦合系统的横向振动3梁耦合模型。将动刚度法的计算结果与有限元法进行对比,表明动刚度法具有良好的精度。分析桨-轴-船体耦合系统的垂向固有振动特性。在低频段内该系统主要表现为船体梁的振动,推进轴系对船体梁的固有特性影响较小。对左右双桨分别施加不同相位差的单位垂向简谐力,计算由各轴承位置输入至船体梁的功率流。结果表明,双桨激励相位差的增大会使输入至船体梁的功率流变小。因此,在对桨-轴-船体耦合系统的横向振动控制方面,应重点关注双桨激励相位差较大时的工况。  相似文献   

12.
以机械压力喷嘴为研究对象,应用VOF模型对脉动压力下的喷嘴内部流场进行了数值模拟,分析了喷嘴在脉动压力下的流量、雾化角等特性。结果表明:脉动压力下瞬时流量和雾化角呈现相同频率的脉动,且平均流量基本在设计流量附近。流量的振幅随脉动频率的变化,呈现出先增大后减小的趋势,并在400Hz时达到最大值;入口压力与出口流量的相位差随频率的增大而增加,且近乎线性关系,脉动压力的幅值对相位差影响不大。  相似文献   

13.
在梳理流噪声数值预报方法的基础上,采用流场大涡模拟(large eddy simulation,LES)和声学边界元(boundary element method,BEM)方法在频域内计算预报了船体流噪声谱曲线,求取了其等效声中心.LES计算时选用动力学Smagorinsky-Lilly(dynamic Smagorinsky-Lilly,DSM)亚格子应力模型,流噪声由船体壁面脉动压力和法向速度特性决定,声源节点和声节点变量传递采用一对一的守恒传递方式.结果表明:某型船在航速14 kn时,裸船体流噪声在20 Hz~2 kHz频段内总声源级为133dB;当计算有效频段扩展到20 kHz时,总声源级达143.3 dB.流噪声主要来源于兴波引起的涡量,且主要集中于100 Hz~10 kHz频段.球首尾流区和船体尾涡区对流噪声辐射量贡献明显,特别是球首尾流区,对全频段都有明显的贡献,为水面舰艇流噪声研究提供了一条新的途径.  相似文献   

14.
基于求解环肋柱壳的传统方法和有限元法,对潜艇耐压船体在受到内压和外压时应力状态进行了研究。根据传统理论和数值计算结果,对两种状态下的应力进行了详细的对比分析,可以得出受到内压状态时应力要小,并且随着设计潜深的加大两者的偏差也会加大。研究对正确理解泵水和下潜状态下应力之间的关系以及对潜艇结构设计都有重要意义。  相似文献   

15.
Resistance analysis is an important analytical method used to evaluate the hydrodynamic performance of High Speed Craft(HSC). Analysis of multihull resistance in shallow water is essential to the performance evaluation of any type of HSC. Ships operating in shallow water experience increases in resistance because of changes in pressure distribution and wave pattern. In this paper, the shallow water performance of an HSC design concept, the semi-Small Waterplane Area Twin Hull(semi-SWATH) form, is studied. The hull is installed with fin stabilizers to reduce dynamic motion effects, and the resistance components of the hull, hull trim condition, and maximum wave amplitude around the hull are determined via calm water resistance tests in shallow water. These criteria are important in analyzing semi-SWATH resistance in shallow water and its relation to flow around hull. The fore fin angle is fixed to zero degrees, while the aft fin angle is varied to 0o, 5o, 10o, and 15o. For each configuration, investigations are conducted with depth Froude numbers(Fr H) ranging from 0.65 to 1.2, and the resistance tests are performed in shallow water at the towing tank of UTM. Analysis results indicate that the resistance, wave pattern, and trim of the semi-SWATH hull form are affected by the fin angle. The resistance is amplified whereas the trim and sinkage are reduced as the fin angle increases. Increases in fin angle contribute to seakeeping and stability but affect the hull resistance of HSCs.  相似文献   

16.
Resistance analysis is an important analytical method used to evaluate the hydrodynamic performance of High Speed Craft (HSC). Analysis of multihull resistance in shallow water is essential to the performance evaluation of any type of HSC. Ships operating in shallow water experience increases in resistance because of changes in pressure distribution and wave pattern. In this paper, the shallow water performance of an HSC design concept, the semi-Small Waterplane Area Twin Hull (semi-SWATH) form, is studied. The hull is installed with fin stabilizers to reduce dynamic motion effects, and the resistance components of the hull, hull trim condition, and maximum wave amplitude around the hull are determined via calm water resistance tests in shallow water. These criteria are important in analyzing semi-SWATH resistance in shallow water and its relation to flow around hull. The fore fin angle is fixed to zero degrees, while the aft fin angle is varied to 0°, 5°, 10°, and 15°. For each configuration, investigations are conducted with depth Froude numbers (Fr H ) ranging from 0.65 to 1.2, and the resistance tests are performed in shallow water at the towing tank of UTM. Analysis results indicate that the resistance, wave pattern, and trim of the semi-SWATH hull form are affected by the fin angle. The resistance is amplified whereas the trim and sinkage are reduced as the fin angle increases. Increases in fin angle contribute to seakeeping and stability but affect the hull resistance of HSCs.  相似文献   

17.
This paper presents a calculation method for the pressure fluctuation induced by a cavitating propeller. This method consists of two steps: the first step is the calculation of propeller sheet cavitation, and the second step is the calculation of pressure fluctuation on the ship stern. It is for practicality that we divide the method into two steps but do not calculate these steps simultaneously. This method is based on a simple surface panel method “SQCM” which satisfies the Kutta condition easily. The SQCM consists of Hess and Smith type source panels on the propeller or cavity surface and discrete vortices on the camber surface according to Lan’s QCM (quasi-continuous vortex lattice method). In the first step, the cavity shape is solved by the boundary condition based on the free streamline theory. In order to get the accurate cavity shape near the tip of the propeller blade, the cross flow component is taken into consideration on the boundary condition. In the second step, we calculate the cavitating propeller and the hull surface flow simultaneously so as to calculate the pressure fluctuation including the interaction between the propeller and the hull. At that time, the cavity shape is changed at each time step using the calculated cavity shape gotten by the first step. Qualitative agreements are obtained between the calculated results and the experimental data regarding cavity shape, cavity volume and low order frequency components of the pressure fluctuation induced by the cavitating propeller.  相似文献   

18.
加筋圆柱壳开孔结构强度分析   总被引:1,自引:0,他引:1  
加筋圆柱壳开孔结构是潜艇典型耐压船体的主要结构形式之一,如何避免在开孔周围造成应力集中,即开孔结构补强是工程中特别关心的问题。在设计过程中,因为要多次建模分析,会导致设计分析效率变低,所以开发了加筋圆柱壳开孔结构的参数化建模分析程序。基于参数化建模分析程序,讨论了多参数对于开孔周围应力集中的影响。  相似文献   

19.
It is well known that a decrease in ship resistance may be achieved due to the installation of a stern flap. Therefore, so far, a considerable amount of research on stern flaps has been conducted. Previous research has demonstrated that the primary mechanism by which a stern appendage reduces resistance is a change in the pressure distribution over the aft body of the hull, and secondly through effects on the running attitude, near and far field wave generation, and local transom flow among other phenomena. However, the change in pressure distribution is influenced by the other components. Hence, there is still room for argument about the relative contribution of each component to the pressure distribution. Therefore, as the first step of the research, by conducting the model experiment in towing tank and CFD (Computational Fluid Dynamics) analysis, we examined the effect of running attitudes and wave making at the after portion of the hull on resistance reduction. As a result, it is concluded that a flap affects a change in the wave generated at the transom part and it could lead to a decrease in wave-making resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号