首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the kinematics and dynamics of an underwater quadruped walking robot were derived based on Kane dynamic equations. This methodology allows construction of the dynamic model simply and incrementally. The velocity and angular velocity components of an underwater quadruped walking robot were served as the generalized velocities. The forces which contribute to dynamics of an underwater quadruped walking robot were determined by Kane's approach. The equations of hydrodynamic forces of an underwater quadruped walking robot were deduced. Hydrodynamic coefficients were determined by experiments. The dynamic model was established by obtaining the generalized active forces and the generalized inertia forces. Numerical simulations of the walking behavior on underwater flat ground were implemented to verify the dynamic model of an underwater quadruped walking robot. Simulation results show that the dynamic model is correct.  相似文献   

2.
A systematic method for swimming control of the underwater snake-like robot is still lacking. We construct a simulation platform of the underwater snake-like robot swimming based on Kane's dynamic model and central pattern generator (CPG). The partial velocity is deduced. The forces which contribute to dynamics are determined by Kane's approach. Hydrodynamic coefficients are determined by experiments. Then, we design a CPG-based control architecture implemented as the system of coupled nonlinear oscillators. The CPG, like its biological counterpart, can produce coordinated patterns of rhythmic activity while being modulated by simple control parameters. The relations between the CPG parameters and the speed of the underwater snake-like robot swimming are investigated. Swimming in a straight line, turning, and switching between swimming modes are implemented in our simulation platform to prove the feasibility of the proposed simulation platform. The results show that the simulation platform can imitate different swimming modes of the underwater snake-like robot.  相似文献   

3.
Formally,use of system identification techniques to estimate the forces acting on the beam may give information on hydrodynamic forces due to vortex-induced vibrations(VIVs),but no results from such attempts for submarine pipeline spans have been reported.In this study,a pipe model with a mass ratio(mass/displaced mass) of 2.62 is tested in a current tank.The gap ratios(gap to pipe diameter ratio) at the pipe ends are 2.0,4.0, 6.0 and 8.0.The response of the model is measured using optical fiber strain gauges.A modal approach linked to a finite element method is used to estimate the hydrodynamic forces from measurement.The hydrodynamic force at the dominant response frequency is the major concern,and the lift force and added mass coefficients are calculated.Response calculations are performed using force coefficients from the inverse force analysis and the calculated results are in accordance with the experimental data.  相似文献   

4.
As an army main battle equipment, it is required that the tank should have high firing accuracy and high first round hit probability during marching. The initial disturbance of the projectile is the premier factor that takes effect on the marching fire accuracy of the tank. And the marching fire accuracy of the tank depends on the launch dynamics behaviors of the tank. In this paper, the launch dynamics theory of a tank marching fire is studied, and its launch dynamics model is established. Based on the transfer matrix method for multibody system(MSTMM) and the automatic deduction theorem of overall transfer equations, the overall transfer equation and the overall transfer matrix of a tank multibody system are deduced; the launch dynamics equations of the tank marching fire are deduced, and the dynamic response of the tank system, the motion of projectile in barrel, the initial disturbance of the projectile and the vertical target dispersion are exactly simulated; meanwhile, the results of simulation are verified by tests. This work provides both theoretical foundation and simulation approaches for improving the marching fire accuracy of the tank.  相似文献   

5.
A dynamic hysteretic constitutive model for soil dynamics, Ramberg-Osgood model, is introduced and improved in the paper. Since the model is inherently 1D and is assumed to apply to shear components only, other components of the deviatorie stress and strain and their relations in 3D case could not be fully described. Two parameters, the equivalent shear stress and the equivalent shear strain, are defined to reasonably establish relations between each of stress and strain components respectively. The constitutive equations of the initial Ramberg-Osgood model are extended to generalize the theory into multidimensional cases. Difficulties of the definition of load reversal in 3D are also addressed and solved. The improved constitutive model for soil dynamics is verified by comparisons with different soil dynamic testing data covering both sands and clays. Results show that the dynamic nonlinear hysteretie behaviors of soils can be well predicted with the improved constitutive model.  相似文献   

6.
The structure of a long curved girder bridge is represented with a three-dimensional curved finite element model. Each 4-axle vehicle is modeled by a dynamic system of 35 degrees of freedom. The random irregularities of the track are generated from a power spectral density function under the given track condition. The dynamic interaction between the bridge and train is realized through the contact forces between the wheels and track. Then based on these models, the coupled equations of motion are solved by applying the time-integration and iteration techniques to the coupled system. The proposed formulation and the associated computer program are then applied to a real curved girder bridge. The dynamic responses of the bridge-vehicle system and the derailments and offload factors related to the riding and running safeties of vehicles are computed. The results show that the formulation presented in this paper can well predict dynamic behaviors of both bridge and train with reasonable computation efforts.  相似文献   

7.
The free-surface wave interaction with a pontoon-type very large floating structure(VLFS) is analyzed by utilizing a modal expansion method. The modal expansion method consists of separating the hydrodynamic analysis and the dynamic response analysis of the structure. In the dynamic response analysis of the structure,the deflection of the structure with various edge conditions is decomposed into vibration modes that can be arbitrarily chosen. Free-free beam model, pinned-free beam model and fixed-free beam model are three different types of edge conditions considered in this study. For each of these beam models, the detailed mathematical formulations for calculating the corresponding eigenvalues and eigenmodes have been given, and the mathematical formulations corresponding to the beam models of pinned-free beam and fixed-free beam are novel. For the hydrodynamic analysis of the structure, the boundary value problem(BVP) equations in terms of plate modes have been established, and the BVP equations corresponding to the beam models of pinned-free beam and fixedfree beam are also novel. When these BVP equations are solved numerically, the structure deflections and the wave reflection and transmission coefficients can be obtained. These calculation results point out some findings valuable for engineering design.  相似文献   

8.
An efcient approach for yard crane(YC)scheduling is proposed in this paper.The definition of task group for YC scheduling is proposed.A mixed integer programming(MIP)model is developed.In the model,objective functions are subject to the minimization of the total delay of complete time for all task groups and the minimization of block-to-block movements of YCs.Due to the computational scale of the non-deterministic polynomial(NP)complete problem regarding YC scheduling,a rolling-horizon decision-making strategy is employed to solve this problem,by converting the MIP model into another MIP model in the scheduling of each rolling period.Afterwards,a heuristic algorithm based on modified A*search is developed to solve the converted model and obtain near optimal solution.Finally,the computational experiments are used to examine the performance of the proposed approach for YC scheduling.  相似文献   

9.
Intensity flicker is a common form of degradation in archived film. Most algorithms on this distortion are complicated and uncontrolled. This paper presented a discrete mathematical model of flicker, designed a block-based estimation method of the model's parameters according to their features of intensity variation in large area. With this estimation result it constructed a compensation model to repair the current frame. This restoration approach is full automatic and the repair process of current frame does not need the information of frames behind it. The algorithm was realized to establish a simple and adjustable repair system. The experimental results show that the proposed algorithm can remove most intensity flicker and preserve tho wanted effects.  相似文献   

10.
Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the restored loads, switch frequency and generator efficiency are taken into account. In this model, analytic hierarchy process(AHP) is proposed to determine the coefficients of these objective functions. Meanwhile, a quantum differential evolution algorithm with triple quantum bit code is proposed. This algorithm aiming at the characteristics of shipboard power system is different from the normal quantum bit representation. The individual polymorphic expression is realized, and the convergence performance can be further enhanced in combination with the global parallel search capacity of differential evolution algorithm and the superposition properties of quantum theory. The local optimum can be avoided by dynamic rotation gate. The validity of algorithm and model is verified by the simulation examples.  相似文献   

11.
A coupled element modeling method is proposed for global dynamic analyses of unbonded flexible risers.Owing to the multi-layer structure of unbonded flexible risers, the global-dynamic-analysis method applied to the steel rigid risers is insufficient for flexible risers. The main challenges lie in the enormous difference between the anti-tension and anti-binding capacity of unbonded flexible risers which results in serious ill-conditional calculation in global dynamic analysis. In order to solve this problem, the coupled element modeling approach was proposed in this study. A time domain fatigue analysis was applied to illustrate the necessity of the proposed approach.A dynamic benchmark case is used to demonstrate the accuracy of the coupled element method respectively.Subsequently the validated coupling element method is employed to conduct the global dynamic analyses for a free hanging flexible riser. The results demonstrate that the proposed approach can give the accurate global dynamic response under the guidance of the fatigue failure mode for unbonded flexible riser. The parametric influence analyses also provide a practical and effective way for predicting the global dynamic response.  相似文献   

12.
In cellular networks, cooperative relaying is an economic and promising way to enlarge the network capacity and coverage. In the case that multiple users and multiple relays are taken into account, efficient resource allocation is important in such networks. In this paper, we consider the joint relay power control with amplify- and-forward (AF) strategy and dynamic pricing for uplink cellular networks in order to maximize the network administrator's system revenue. The system revenue is associated with pricing strategies and mobile users' random data request, which is supported by the relay assisted transmission. To deal with the problem of the coupling in pricing and relay resource allocation, we utilize Lyapunov optimization techniques to design online pricing and relay power control without any statistic information of random events in networks. Theoretical analysis shows that the proposed algorithm can achieve a near-optimal performance and simulation results also validate its effectiveness and robustness.  相似文献   

13.
This paper presents a numerical investigation into the dynamics of marine cables which are extensively used in offshore industry. In this numerical study, the Euler-Bernoulli beam model is adopted to develop the governing equations of the cable. Bending stiffness is considered to cope with the low tension problem in local area of towing cable, and thus a more accurate solution with the consideration of the axial elongation can be given.The derived strongly-coupled and nonlinear governing equations are solved by a second-order accurate, implicit,and large time step stable central finite difference method. The quadratically convergent Newton-Raphson iteration method is applied to solving the discrete nonlinear algebraic equations. Then a towed array sonar system(TASS)problem is studied. The numerical solutions agree reasonably well with the experimental data and the simulated results of the references. The specified program of the present paper shows great robustness with high efficiency.  相似文献   

14.
A single-degree-of-freedom equation of motion was used for modeling a compliant offshore structure exposed to viscous hydrodynamic loads. The equation of motion contains nonlinearities in the forms of both Duffing stiffness and Morison drag force with current. The water particle velocity and acceleration for calculating the Morison inertia and drag forces are modeled as Gaussian processes based on a Pierson-Moskowitz (P-M) elevation spectrum. The single-degree-of-freedom equation of motion containing different ocean current values are then numerically integrated via a fourth-order Runge-Kutta scheme. Time trajectories of the surge response displacements of the offshore structure and the response probability density curves are obtained. Furthermore, the ocean current influences on the response central moments up to the fourth order are studied. A literature review reveals that this is the first treatment of such a pair of nonlinearities in time domain. The simulation results are analyzed, and some conclusions valuable for engineering design are pointed out.  相似文献   

15.
The paper introduced a special approach for diesel‘s all-speed-governor modeling, which, in some cases,could solve the knotty problem frequently met in computer simulation of diesel propulsion system or diesel generating set. Suppose that it is hard to get a control-oriented governor mathematical model when the general approaches, the analytical approach or the experimental approach, are applied, and that an open-loop step response of the diesel engine and its system is available by means of computer simulation, the critical three parameters of a governor mathematical model, the proportional gain Kp, integral time constant Ki, and derivative time constant Kd, can be determined by use of PID tuning method which are widely applied in industrial process control. This paper discussed the train of thought of the approach, precondition, procedure, several modifications of the classical PID model, and some points for attention. A couple of case studies were given to demonstrate the effectiveness of this approach.  相似文献   

16.
Modeling is essential, significant and difficult for the quality and shaping control of arc welding process. A generalized rough set based modeling method was brought forward and a dynamic predictive model for pulsed gas tungsten arc welding (GTAW) was obtained by this modeling method. The results show that this modeling method can well acquire knowledge in welding and satisfy the real life application. In addition, the results of comparison between classic rough set model and back-propagation neural network model respectively are also satisfying.  相似文献   

17.
The planar flexible manipulator undergoing large deformation is investigated by using finite element method (FEM). Three kinds of reference frames are employed to describe the deformation of arbitrary point in the flexible manipulator, which are global frame, body-fixed frame and co-rotational frame. The rigid-flexible coupling dynamic equation of the planar flexible manipulator is derived using the Hamilton’s principle. Numerical simulations are carried out in the end of this paper to demonstrate the effectiveness of the proposed model. The simulation results indicate that the proposed model is efficient not only for small deformation but also for large deformation.  相似文献   

18.
In this article a new principle of geometric design for blade's surface of an impeller is provided. This is an optimal control problem for the boundary geometric shape of flow and the control variable is the surface of the blade. We give a minimal functional depending on the geometry of the blade's surface and such that the flow's loss achieves minimum. The existence of the solution of the optimal control problem is proved and the Euler-Lagrange equations for the surface of the blade are derived. In addition, under a new curvilinear coordinate system, the flow domain between the two blades becomes a fixed hexahedron, and the surface as a mapping from a bounded domain in R2 into R3 , is explicitly appearing in the objective functional. The Navier-Stokes equations, which include the mapping in their coefficients, can be computed by using operator splitting algorithm. Furthermore, derivatives of the solution of Navier- Stokes equations with respect to the mapping satisfy linearized Navier-Stokes equations which can be solved by using operator splitting algorithms too. Hence, a conjugate gradient method can be used to solve the optimal control problem.  相似文献   

19.
It is urgently needed to describe the structural collapse process under extreme conditions to survive people.For reinforced concrete structures it is still a difficulty to describe the failure of reinforced concrete members under complex internal force combination,such as under axial forces,bending moment,shear forces, and torsion working together.In this paper,based on the traditional Nielsen model,a new unified failure model on reinforcement evenly distributed concrete members with box section under combined forces is introduced.The advantages of the proposed new model are to consider the dowel actions of reinforcements and reasonably to consider of the shear carrying capacity of concrete,especially when compression stress of concrete is in a high value.Finally,the theoretical results of the new model are compared with a series of experimental results of box section members.The comparison has verified that the new model is more accurate and feasible for the design and calculation of box section members.  相似文献   

20.
Damping plates have been used for truss spars in gulf of Mexico to reduce the heave motions. The plates are usually perforated with holes for the passage of marine risers, but the effects of the perforation have not been examined thoroughly. In the present study, a computational fluid dynamics investigation into the hydrodynamic forces is carried out by using FLUENT, which is on two-dimensional perforated plates with varying degrees of perforation in oscillating flow under small Keulegan-Carpenter (KC) number. The numerical results of the hydrodynamic coefficients are presented. The effects of both the perforation ratio (PR) and KC number on the hydrodynamic coefficients of the plates are discussed. Some results of the simulated flow patterns around the plates were also given and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号