首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为探求某机车用轴流式风机的系统性能,对不同工况下带有前后导叶的该风机内部流场进行了数值仿真.模拟结果表明,在叶片转速不变情况下,随着气体流量的增加,叶片的气动压力增加,功率增大,风机的效率也随之提高;在气体流量保持不变时,随着叶片转速的增加,叶片的气动压力增加,功率增大;当风机出口存在阻力时,则叶片的气动压力增加,功率也增大.研究还表明,叶片两侧的最大气压差可达10 500 Pa以上,高速旋转时对叶片有一定危害.计算结果与试验测试结果的对比表明,二者吻合较好.  相似文献   

2.
为了解决地铁车辆辅助变流器噪声超标1.5 dB(A)的问题,基于数值模拟和噪声测试相结合的方法,对辅助变流器的气动噪声特性进行了分析. 首先通过大涡模拟计算辅助变流器的气动噪声源,然后基于声类比法计算气动噪声源在流道和外部空间的声传播,最后分析风机与流道的涡流和噪声分布云图,对比各测点声压级频谱仿真和试验结果的变化趋势. 研究结果表明:在距离出风口0.4 m处仿真和试验的峰值频率均为290 Hz,量值仅相差5%,说明仿真方法正确可行;风机进口速度不均匀度过大、风机叶片涡流过多是导致风机噪声过大的原因;通过在风机进口增加方形整流网,改善了风机进口速度不均匀度,减少了风机叶片涡流,实现相同测点总声压级降低2.5 dB(A).   相似文献   

3.
为研究高速列车受电弓气动噪声源分布及频谱特性,利用计算流体力学原理对高速列车受电弓流场进行计算,获得了受电弓表面脉动压力;在此基础上,利用FW-H方程计算高速列车受电弓远场气动噪声.计算结果表明:高速列车受电弓远场气动噪声具有较为明显的指向性,其指向性基本上不受列车速度的影响;远场监测点总声压及在10~20附近达到最大.受电弓气动噪声的总声压级随着列车速度的增加而显著增大;受电弓远场气动噪声具有明显的主频,且随着列车速度的增加,远场气动噪声的主频也增大;受电弓顶部横梁是引起受电弓气动噪声的主要因素.   相似文献   

4.
磁悬浮列车高速运行时受到较大气动升力作用,尤其是尾车向上的气动升力较大,易使悬浮性能恶化,甚至导致悬浮控制系统失效,影响列车的乘坐舒适性及运行安全性,因此亟待开展高速磁悬浮列车的尾车升力特性研究及改善工作. 对开展过风洞试验的高速磁悬浮列车进行数值模拟计算,得到的列车表面压力系数与风洞实验数据吻合较好,并加装气动翼改善高速磁悬浮尾车气动升力,研究了气动翼角度、数量对尾车气动性能的影响. 研究结果表明:仅安装一个气动翼时,其自身的气动升力随角度的增加而减小,但尾车气动升力则呈现先减小后增大的规律,气动翼角度为12.5° 时尾车升力最小,与原始磁悬浮列车相比气动升力系数减小3.9%,气动翼及尾车气动阻力略有增加;以气动翼与车体切线角度保持不变为基准在尾车安装多个12.5° 气动翼,不同位置气动翼的气动阻力基本相同,气动翼数量增加后尾车气动阻力随之增大;不同位置气动翼的气动升力存在差异,向鼻尖方向气动翼的气动升力递减,尾车气动升力随气动翼数量增加先减小后趋于稳定;各方案中安装2个气动翼的磁悬浮列车气动性能相对更优,与原始磁悬浮列车相比尾车气动升力减小4.6%,整车阻力仅增加1.4%.   相似文献   

5.
建立3MW风力发电机叶片的三维内、外流场模型,运用流体仿真软件Fluent仿真分析在随机风速下,叶片周围气动流场状态.对叶片进行优化设计,通过对比分析叶片截面和叶片表面的流体流态,发现在随机风速作用下优化后的叶片的失速程度有明显的降低,表明优化后的叶片气动性能显著提高.为分析叶片优化后风力机的功率特性,采用动力学分析软件Simpack建立风力发电机的整机模型,联合Turb Sim生成风文件对叶片加载,仿真分析得到风轮的功率,分析结果表明风力机功率达到设计要求.  相似文献   

6.
喷水推进轴流泵三元水力设计   总被引:2,自引:0,他引:2  
基于环量的三元设计方法和计算流体动力学,研究了叶片数、叶片流向环量中心位置与叶片出口边环量对叶轮性能的影响,分析了导叶进口边和出口边环量对喷水推进轴流泵性能的影响,通过合理地控制这些因素,设计了一种效率高、空化性能好的喷水推进轴流泵。在流量为56.2m3·s-1时,泵的扬程为35.9m,功率为21 465kW,效率为92.3%,可见,设计泵的性能优良,效率高。研究结果表明:增加叶片数能够有效减小单叶片转矩,当叶片数从5个增加到7个时,单叶片转矩减小了21%;叶片环量中心靠近出口边,有利于提高叶轮的空化性能,当环量中心从叶片弦长的0.3处移动到0.7处时,叶轮吸力面空化面积减小80%;叶轮出口边环量斜率会影响叶轮效率,当斜率分别为0.8、1.0和1.2时,叶轮效率逐步提高;当出口边环量从0.40增加到0.50时,叶轮的扬程和功率近似线性增加,扬程增加19.9%,功率增加19.5%;随着导叶进口边环量与出口边环量的比值的增大,泵效率先增大后减小,当比值为0.93时,泵的效率最高;导叶出口边环量分布会影响泵的效率、出口不均匀度和出口周向动能,当导叶出口边环量为-0.05时,泵的效率最高,出口不均匀度和出口周向动能最小。  相似文献   

7.
以CH4为放电气体,利用电感耦合等离子体化学气相沉积(ICP-PECVD)法制备了类金刚石薄膜,使用.FTIR、AFM、台阶仪对薄膜进行r表征,并对薄膜的沉积过程进行了光谱诊断(OES).研究了射频功率和基底在放电腔体中的佗置对薄膜表面粗糙度、沉积速率和硬度的影响.实验结果表明:A位置处薄膜粗糙度随着功率的增加先减小后增大,随着射频功率的升高,薄膜的硬度逐渐增大,沉积速率先增大后减小,而薄膜硬度和沉积速率都随着与线圈中心距离的增加而减小.光谱诊断结果显示,随着功率的升高,Iβ/Iα和CH的强度呈增大趋势.结合上述研究结果,分析了影响薄膜生长的多种因素.  相似文献   

8.
变频调速异步电动机的转差率   总被引:5,自引:0,他引:5  
以异步电动机机械特性曲线为基础,分析了变频调速异步电动机在拖动恒转矩负载、恒最大转矩负载、变转矩(非风机和泵类)负载、恒功率负载以及风机和泵类负载时,转差率随频率变化的规律.给出了在不同性质的负载和频率条件下,电动机的转差率和转速的计算公式.研究表明,变频调速电动机的转差率随频率的变化而变化.本研究的结论否定了变频调速电动机转差率不变的观点.  相似文献   

9.
为了探讨船舶轮缘推进器(RDT)橡胶垫支撑水润滑推力轴承的均载特性,提出了推力轴承均载特性参数测试方法;在多功能立式水润滑试验台上,以用于RDT的内径124 mm、外径196 mm水润滑橡胶垫支撑推力轴承为试验对象,在盘面上选取轴承平均半径的截面,对称布置1个微型压力传感器和1个微型温度传感器,随着轴一起旋转,采用无线遥测技术分别获取全瓦水膜压力分布和推力盘温度;通过预设瓦块高度差和推力盘静态倾斜量模拟偏载的情况,研究了载荷和转速变化对试验轴承水膜压力分布、摩擦因数和推力盘温度的影响规律。研究结果表明:弹支的均载效果会随着工况的变化而变化,当转速不变时,载荷增大会增加各瓦橡胶垫的变形,从而增强均载效果;而推力盘倾斜程度会随着转速增加而增强,从而加剧了瓦块载荷的不均性;开展RDT橡胶弹支可倾瓦结构均载设计时,除了考虑推力盘和瓦块不平的制造和安装因素,还需考虑轴承的转速和载荷;从轴承各瓦压力分布随工况变化的关系看,在转速为100 r·min-1、载荷为0.35 MPa时,轴承接触承载比例升高,因此,水膜压力测试为判别轴承润滑状态提供了一条新途径。   相似文献   

10.
为研究强降雨对高速列车空气动力学性能的影响, 利用Euler-Lagrange方法建立了强降雨环境下高速列车空气动力学计算模型; 空气建模为连续相, 采用Euler方法描述, 雨滴建模为离散相, 采用Lagrange方法描述, 并采用相间耦合方法对降雨环境进行模拟; 分别开展列车气动性能计算及雨滴降落仿真, 并与试验数据进行对比, 验证计算方法的准确性; 数值仿真了强降雨环境下高速列车的流场结构和气动特性。计算结果表明: 随着降雨强度的增加, 在雨滴的冲击作用下, 流线型头型前端区域的正压逐渐增大, 流线型头型后端区域的负压逐渐减小, 从而导致头车气动阻力增大; 降雨强度对高速列车头车气动阻力系数的影响较为显著, 而对气动升力系数的影响较小; 与无降雨环境相比, 当降雨强度为100~500 mm·h-1时, 200 km·h-1车速下的气动阻力系数增加0.004 0~0.020 4, 气动阻力增加85~432 N, 增大率为2.64%~13.46%;300 km·h-1车速下的气动阻力系数增加0.002 7~0.013 7, 气动阻力增加129~652 N, 增大率为1.78%~9.05%;400 km·h-1车速下的气动阻力系数增加0.002 3~0.009 8, 气动阻力增加195~829 N, 增大率为1.52%~6.49%, 因此, 不同车速下, 气动阻力系数随着降雨强度的增加而增大, 且与降雨强度近似呈线性关系; 当车速为300 km·h-1, 降雨强度为100 mm·h-1, 雨滴粒径由2 mm增加为4 mm时, 气动阻力系数由0.152 0增大到0.154 9, 气动阻力增加138 N, 增大率为1.91%, 因此, 高速列车气动阻力系数随着雨滴粒径的增加而增大, 且与雨滴粒径近似呈线性关系。   相似文献   

11.
为了研究独立式冷却模块中多热交换器气动特性之间的集群效应,以典型双热交换器工程机械独立式冷却模块为例进行试验与数值仿真研究. 采用多孔介质模型模拟热交换器,利用多重参考坐标系方法模拟风扇性能,建立4种不同热交换器布置方案下的独立式冷却模块数值模型,对比分析气动特性,并进行冷却模块气动性能试验;通过改变热交换器间面积比与厚度比,完成独立式冷却模块气动特性主动控制方法的数值仿真研究. 研究结果表明:独立式冷却模块气动特性上具有独特的集群效应,即当热交换器呈对置方式布置时,不论两者的倾斜角度如何,气动阻力都相等;数值仿真发现相比于面积比控制,当采用厚度比控制的主动控制策略时,改变独立式冷却模块热交换器之间的厚度比,流量比变化更为平缓,且受风扇转速的影响更小,并据此得到两热交换器之间冷却风量、气动阻力与结构参数之间的试验关联式.   相似文献   

12.
空调用贯流风扇性能的实验研究   总被引:1,自引:0,他引:1  
利用实验手段通过对几种条件下贯流风扇的压力、流量、扭矩、效率等参数的测定和计算,进而对热交换器和叶轮叶片倾角对贯流风扇性能的影响进行了研究,找出了使贯流风扇达到最高效率的最佳叶轮叶片倾角。  相似文献   

13.
风轮是风力发电机利用风能的核心部件,而翼型作为风轮的关键零件,其结构参数的选择的不同会对风力机性能造成极大的影响。本文选取3种常用的H型垂直轴风力机NACA系列对称翼型的绕流流动,建立其湍流流场的模型,采用移动网格技术对其进行数值分析与计算,得出风轮的力矩系数、功率及风能利用率的变化规律,在此基础上,详细分析了不同的对称翼型对垂直轴风力机风轮气动性能的影响。根据其气动性能曲线,拟合出给定工况下,风能利用率随尖速比的变化公式,更好的实现定量分析。  相似文献   

14.
为研究高速列车在运营过程中的气动特性, 分析其气动特性变化机理, 设计了2种高速列车-桥梁系统的气动特性风洞试验方案; 开发并建立了适用于在风洞中的高速列车-桥梁系统试验方法与系统; 试验系统分为运动系统与数采系统2个部分; 运动系统基于惯性驱动原理, 以高速伺服电机为驱动力, 通过高强度旋转传送带将缩尺比为1∶8~1∶30的移动车辆模型在风洞中以最高速度50 m·s-1模拟真实运行环境中运行; 在运动系统的搭载下, 自主研发了一套数采系统, 并在风洞实验室中对有无横风作用下的列车进行了气动特性测试。分析结果表明: 试验方法与系统适用于加减速距离短、瞬时加速度大的试验场景, 且不受车辆外形与基础设施的限制, 可降低设计成本, 提高试验的安全与稳定性; 标准误差与平均值之比均不大于10%, 表明数采系统测试的车辆气动特性有较好的平稳性和可重复性, 能够精准得到列车在不同试验条件下的气动特性; 通过对比有无横风作用下的列车气动特性, 得到列车速度对车辆的气动特性影响极其重要; 列车高速移动时, 其因速度产生的气动影响远远大于横风, 且表面测点平均风压系数最大值可达-10, 反映了静态模型的试验方式不能够满足模拟列车高速运行时气动特性状态。   相似文献   

15.
高速车辆气流噪声计算方法   总被引:9,自引:1,他引:9  
随着发动机、传动系和轮胎等其它噪声的降低以及车速的不断提高 ,高速车辆气流噪声变得越来越突出 ,因此研究和降低气流噪声已成为控制高速车辆噪声的关键之一。通过求解广义Lighthill方程 ,得到了适合车辆行驶工况的气流噪声积分计算公式。根据车辆的实际工况 ,对气流噪声计算公式进行了分析 ,明确了在车辆气流噪声中偶极子源噪声占主导地位 ,表面脉动压力是车辆气流噪声的主要声源。在此基础上 ,对车辆气流噪声某些特性进行了讨论和试验  相似文献   

16.
为分析高速磁浮列车驶入隧道时产生的初始压缩波特征, 采用三维可压缩非定常流动的N-S方程和SST κ-ω湍流模型, 基于重叠网格法和有限体积法, 以国内正在研发的时速600 km高速磁浮列车头型为研究对象, 建立了高速磁浮列车驶入隧道的计算模型, 通过分析距隧道进口端内不同距离横截面上不同测点的压力及压力变化率, 得到了车头驶入隧道洞口初始压缩波的空间分布特性和传播特性, 以及不同速度对初始压缩波波动幅值的影响。研究结果表明: 初始压缩波在列车驶入隧道前开始形成, 形成初期具有三维特性, 在隧道截面同一高度上, 靠近车体一侧的初始压缩波压力要比远离车体一侧大; 在隧道截面同一侧, 靠近车体一侧高度越低, 初始压缩波压力越大, 而远离车体一侧初始压缩波压力与高度无关; 当列车驶入隧道一定距离后, 在列车头部前方约36 m处隧道内同一断面处压力相同, 初始压缩波由三维波变成一维平面波; 在列车流线型头部驶入隧道约0.15 m时, 位于隧道300 m测点处的初始压缩波的压力变化率达到最大值; 列车速度越高, 初始压缩波压力峰值越大, 位于隧道100 m处测点的初始压缩波的压力峰值与列车速度的2.5次方近似成正比, 压力变化率峰值与速度的3次方近似成正比。   相似文献   

17.
电控液驱风扇冷却系统及其在工程机械上的应用   总被引:1,自引:1,他引:0  
开发了一种电控液驱风扇冷却系统,解决了工程机械的过热和过冷问题。采用比例溢流阀调节液驱系统的流量和压力,从而调节风扇转速以达到改变系统的散热量。此系统已应用于工程机械并进行现场试验,该工程机械冷却系统包含发动机冷却液散热器、变矩器油散热器和液压油散热器,在作业过程中3个冷却器中的冷却介质始终都维持在最佳温度,采用此冷却系统可提高发动机的经济性,即降低油耗,减小噪声,易布置等特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号