首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
汽车排气系统通过排气挂钩连接在车身上,在发动机运行过程中,会承受来自发动机本体的排气冲击激励。排气挂钩动刚度对汽车噪声-振动-声振粗糙度(NVH)性能至关重要。针对白车身测试的排气挂钩动刚度未满足设计要求的问题,搭建对应的有限元模型进行动刚度仿真分析,结合分析结果及诊断提出3种优化方案。将优化方案在实际白车身上进行动刚度试验验证,结果满足目标要求,验证了该方法的有效性,表明有限元分析在一定程度上可以指导汽车前期设计和优化。  相似文献   

2.
利用传递函数法分析某汽车排气系统挂钩的局部同有频率,发现一些排气系统挂钩固有频率偏低.经过结构优化,使各挂钩的固有频率得到提高并达到目标值要求.怠速工况试验表明,优化后的挂钩不仅降低了车内驾驶员右耳侧噪声,而且减小了排气系统传到车身地板的振动.  相似文献   

3.
某车型怠速时因拍频产生的嗡嗡声影响到车内声品质和舒适性,本文运用OPTA从源-路径-响应的技术路线分析车内怠速10阶噪声,采用模态试验方法验证OPTA分析结果。通过结构分离和结构优化,验证优化方案对车内10阶噪声的影响。试验结果表明,排气系统结构噪声对车内10阶嗓声起主要贡献,通过排气吊耳和车身脱开及更改排气吊耳硬度(刚度)可降低车内怠速10阶噪声,车内嗡嗡声改善明显。  相似文献   

4.
在某轿车产品研发过程中,出现了排气噪声偏高导致车内噪声偏大,从而影响乘坐舒适性的问题,为了消除这两个问题,对排气系统进行优化分析并针对排气噪声对车内NVH影响进行相关的试验验证,通过优化排气系统,最终解决了车内噪声偏高和排气噪声影响车内NVH的问题,提高了产品品质和乘坐舒性。  相似文献   

5.
为解决车辆整备车身噪声传递函数优化中消除某噪声传递函数声压级峰值时易引发新的噪声声压级峰值的问题,提出引入控制变量的车身噪声传递函数优化方法。以某车型驾驶室为研究对象,构建优化模型,以驾驶室结构板件厚度为变量,利用所提出的算法对涉及的参数进行迭代优化。结果表明,该方法有效降低了目标频带内的噪声传递函数声压级峰值。  相似文献   

6.
试验模态分析技术在车辆降噪中的应用   总被引:1,自引:0,他引:1  
利用试验模态分析技术对某款轿车的白车身进行了试验分析,根据模态试验结果对该车车内噪声进行预测后,对白车身进行了优化.白车身优化前、后车辆的噪声测试结果表明,相对于优化前车辆,白车身优化后车辆的车内噪声降低了约3 dB(A),尤其是在50~100Hz频段内的低频噪声降低较多,使车内的声品质得到了较大改善.  相似文献   

7.
针对某车型排气尾管噪声不达标的问题,应用流体动力学仿真分析方法,计算排气消声器内部流场,分析尾管噪声过高是由于消声器内部结构设计不合理产生的气流再生噪声。根据问题真因,进行方案优化,通过对比分析,优化后方案改善明显。同时,为了保证排气系统的声学性能,应用GT-POWER软件搭建单进双出传递损失分析模型,分析优化后方案的消声能力。通过尾管噪声测试,优化方案噪声水平明显降低,并满足目标要求。  相似文献   

8.
描述了长安汽车公司某款车身和座椅使用了镁合金材料的汽车,对座椅、车身以及整车进行了低频振动和噪声分析.从振动方面进行的分析有BIW的模态分析、座椅的模态分析、TirmmedBody的模态分析、BIW的接附点动刚度分析、车轮不平衡力下的车内振动分析.从噪声方面进行的分析有噪声传递函数分析、发动机激励下的车内噪声分析.通过分析,掌握了镁合金车身低频结构的振动噪声基本特性,发现了结构上的一些问题,并针对这些问题进行了结构优化,优化后的结果都满足或接近于分析目标值.  相似文献   

9.
为实现对某款越野车车内噪声性能进行前期预测和优化,运用Altair公司Hyper Works软件NVH-Director模块搭建了"整备车身+整备车架"分析模型。通过传递路径贡献量分析找到影响车内噪声的关键路径,并结合模态贡献量分析识别出车身顶棚为关键影响部位。以整备车身结构作为优化对象制定优化方案,优化后车内噪声比优化前降低了约6 d B(A),达到优化目标。  相似文献   

10.
排气系统悬挂引发汽车NVH问题研究   总被引:1,自引:1,他引:0  
排气系统的振动主要是通过排气系统的悬挂传递到车身,悬挂点的合理布置可以有效降低由排气系统引起的整车振动和噪声,提高整车舒适性.本文主要论述了排气系统悬挂影响整车NVH的原因,通过论证分析、试验验证,提供解决方法.  相似文献   

11.
研究了如何在车身的各个开发阶段,合理地应用多种优化设计方法。以某款车的白车身正向开发为例,运用拓扑优化技术,找到白车身结构最有效的材料分布;建立全参数化的几何/有限元模型,研究载荷传递路径,确定车身结构,采用基于实验设计与近似模型的参数优化技术,平衡白车身的结构、安全、振动噪声等性能和车身质量,得到了最优设计方案;优化零件形貌,设计冲压筋。通过4个具体的案例(拓扑优化、路径研究、参数优化和形貌优化),合理的运用多种优化设计方法,优化车身正向开发流程,提高开发效率,提升车身的结构、安全和振动噪声等性能,并降低车身质量。  相似文献   

12.
乘用车车内结构噪声治理探讨   总被引:2,自引:0,他引:2  
研究了车内噪声产生机理,阐述了车内结构噪声治理的试验与理论计算方法,建立了乘用车车内结构噪声治理的流程,主要包括车辆噪声振动测试、车内噪声产生原因分析、白车身有限元模态分析、白车身模态试验、车室声学分析、车身结构优化等.按照该流程进行了实际车辆车内结构噪声的治理,显著降低了车内结构噪声,提高了该车辆的NVH特性.  相似文献   

13.
针对某款车型在样车测试中发现的车辆关门力大问题,经对比不同车型的排气孔面积和车辆乘员舱体积,发现问题产生的主要原因是排气孔面积不足。通过有限元方法对车身钣金件增加排气孔后的车身刚度、强度进行分析优化,结果显示优化后车身扭转刚度降低0.63%,弯曲刚度降低0.81%,车身刚度仍满足设计要求,排气孔处的应力值分别为56 MPa和54 MPa,低于材料屈服强度,验证了优化方案的可行性和可靠性。  相似文献   

14.
根据对长安胜利客车排气噪声的实际控制,主要分析客车排气噪声的控制方法——消声器优化设计,以及在实际应用中应注意的问题。  相似文献   

15.
在某乘用车的开发过程中,工程样车出现了加速噪声不达标的问题。为解决问题以保证不影响项目时间节点,敏感位置和原因需要快速确定。CAE方法是目前行业中解决工程问题最有效和常用的手段,本文即采用CAE方法对问题进行分析诊断和结构优化,首先进行整车有限元建模,整个模型包括车身声腔、内饰车身、底盘结构件、动力传动系统结构件、模态轮胎等,各零部件之间利用刚性单元或者弹性单元连接和组装。载荷为悬置被动端的加速度激励,输出的监测点为车内噪声和座椅导轨的振动水平。在加速噪声结果峰值附近进行节点贡献量分析,针对贡献量大的位置提出了优化方案。对比优化前后的车内加速噪声结果,表明优化改进后加速噪声明显降低,达成了整车NVH目标。该工作体现了利用整车CAE仿真分析进行问题诊断和设计优化,可以极大地提高问题解决效率,降低试验成本,有利于缩短开发周期。  相似文献   

16.
正针对某款国产SUV开发过程中出现路面激励而引起车内后排乘员噪声的问题,本文利用传递路径分析理论,分析车内振动和噪声产生的关系以及传播路径,建立整车振动与噪声分析模型,借助有限元分析,分析路面激励通过车身结构而引起车内振动与噪声的传递路径,对影响比较大的几条传递路径进行优化,使其达到目标值。最终,通过对样车进行试验,车内后排低频的隆隆声消失,达到了期望的效果。该分析方法对车身及整车的NVH分析与优化提供一定的参考价值。  相似文献   

17.
针对某SUV车型存在的车内加速噪声问题,文章从车内噪声产生的机理、关键影响因素和控制方法着手,利用装配车身的NTF曲线和各结构件模态试验分析了噪声结构的传递路径,并使用CAE仿真手段优化了车身板件模态、副车架模态和悬置系统,改善了车内加速噪声问题。最终,优化后的实车试验结果验证了该控制方法的有效性,为SUV车内加速噪声控制提供了设计指导。  相似文献   

18.
基于GT-Power软件的BL1.6L发动机排气噪声优化研究   总被引:1,自引:0,他引:1  
建立了华晨公司自主开发的某型1.6 L发动机仿真模型并进行了标定,将该发动机模型与消声器数值模型进行耦合计算得到了该发动机排气系统的尾管噪声,并进行了该排气系统的优化改进.对优化后排气系统进行的实车测试及发动机台架试验结果表明,排气系统尾管噪声的A计权总声压级满足了目标要求:转速为1 200r/min时的2阶噪声和转速为1 400r/min时的4阶噪声均得到了很大程度的改善.  相似文献   

19.
通过研究车身结构优化方案改善全景天窗局部模态,从局部模态云图分析和传力路径着手,通过虚拟仿真验证分析,整理出通过天窗加强板厚度优化、天窗加强板形貌优化、顶盖钣金搭接优化、腔体断面优化4个途径优化车身结构的方法,使全景天窗局部模态得到提升,避免全景天窗车型出现Booming共振异响及车内噪声问题。  相似文献   

20.
某微型客车在800-1 900 rpm有明显的"嘟嘟"声及排气噪声偏大。本文采用仿真和试验相结合的方式,分析排气系统的振动、背压、消声器传递损失、尾管噪声、插入损失和功率损失特性。分析结果表明排气尾管发生共振,放大发动机高次谐波分量,是引起本排气噪声问题的主要原因。通过多方案分析比较,确定一合理优化方案,其排气噪声降低1-5dB(A),主驾驶员右耳噪声降低0.5-2.5 dB(A),满足功率损失比、插入损失和背压差标准要求,"嘟嘟"声明显减弱,声品质提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号