首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
重庆红岩村嘉陵江大桥为高低塔双索面公轨两用钢桁梁斜拉桥,索塔斜拉索锚固采用钢锚箱形式。钢锚箱为箱形结构,最大节段尺寸为6.2m×2.2m×3.0m(长×宽×高),节段最重达26t,吊装高度达160m。首节钢锚箱索导管长达8m,跨越塔柱2个浇筑节段(标准节段高6m)。针对钢锚箱体积大、重量重、吊装高度高和首节钢锚箱索导管超长的特点,采用专用起重设备吊装钢锚箱节段,首节钢锚箱与索导管分离安装,首节钢锚箱索导管通过空间位置放样、初定位、精密定位确保三维坐标精度,采用L10角钢进行加强以防首节钢锚箱变形,剩余节段钢锚箱安装采用导向装置就位。施工中严格控制每节段钢锚箱的平面位置、高程、倾斜度、顶面平整度,实现了钢锚箱安全、优质、快速的施工目标。  相似文献   

2.
沪通长江大桥全长11 072m,主航道桥为(140+462+1 092+462+140)m五跨连续钢桁梁斜拉桥。索梁锚固结构采用设在主梁上弦节点顶面的双腹拉板式钢锚箱方案。钢锚箱由多个单体部件组焊而成,厚板较多,焊后变形校正难;安装时定位尺寸放样难,精度要求高。考虑到该桥锚箱的锚拉板较厚,且零件较长,若先将锚拉板与上弦杆件焊接,易造成较大焊接变形,因此该桥锚箱施工采用先将两侧锚拉板与"井"字形构件预制成整体,再整体与主桁构件焊接的方法。通过分析找出钢锚箱定位尺寸相互关系的函数方程,利用函数计算法快速得出全桥各锚箱的定位尺寸值,解决了锚箱放样难题;研究了合理组拼顺序和焊接方法,克服了焊后变形大的问题。  相似文献   

3.
苏通长江大桥在国内首次采用钢锚箱结构,由于首节钢锚箱位于225.9 m高空,通过精度分析,仅控制制造精度无法保证钢锚箱现场安装精度要求,通过在每次安装钢锚箱间设置调整垫片实现现场安装线形调整,经苏通长江大桥实践获得了很好的控制效果.该文主要研讨了钢锚箱总体控制系统、误差分析与线形调整技术.  相似文献   

4.
大跨度斜拉桥索塔钢锚箱锚固体系横向受力分析方法   总被引:1,自引:0,他引:1  
杨允表  兰昌荣 《世界桥梁》2011,(1):42-45,63
大跨度斜拉桥索塔锚固区钢锚箱和混凝土塔壁形成一个钢一混凝土组合结构,其中钢锚箱拉板和混凝土侧壁共同承受斜拉索的水平分力,而钢锚箱两端和混凝土前壁之间则存在比较复杂的叠合效应.以上海长江大桥主跨为730 m的5跨连续分离式钢箱梁斜拉桥为例,利用4个两维模型简化分析钢锚箱和混凝土塔壁的组合结构,进行分析比较后得到一个准确的...  相似文献   

5.
广东榕江大桥为(60+70+380+70+60)m双塔双索面混合梁低塔斜拉桥,采用门式框架桥塔,斜拉索辐射型布置,桥塔顶设钢锚室进行斜拉索集中锚固。钢锚室高6.0m、顺桥向长4.6m、横桥向宽2.36m,由壁板、腹板、底板、隔板、锚箱部件及预埋件等构成,横桥向分为3个锚室,每个锚室锚固4对斜拉索,锚室采用重防腐涂装体系。钢锚室制造时,对钢锚室底板及预埋承压板端面进行整体铣面加工;采用超声冲击和整体振动技术,消除钢锚室焊接残余应力。钢锚室安装时,在预埋承压板与塔顶混凝土间预留5cm空隙,采用压浆填充密实,并对预埋承压板的平整度进行跟踪测量;钢锚室采用900t浮吊一次性吊装就位,再利用4台三向千斤顶进行微调。实践表明,该桥桥塔钢锚室设计合理,施工关键技术有效保证了钢锚室制造和安装精度。  相似文献   

6.
自锚式悬索桥结构新颖美观,大缆和主梁锚固构造是其关键部位。对上海浦东川环南路浦东运河桥的总体设计作了介绍,该桥为112 m+72 m主跨的自锚式选索桥。采用双主梁的钢箱梁,锚箱为钢结构。钢锚箱设计新颖,构造独特。由于其受力特点不易认识,因此,采用板壳单元的有限元模型进行分析,得到了其传力途径及各部位应力水平。  相似文献   

7.
苏通长江公路大桥为主跨1088m钢箱梁斜拉桥,索塔锚固区采用钢锚箱结构,属国内首次.鉴于主桥结构具有跨度大、刚度小、非线性效应明显、受温度与风振影响显著等特点,因此上部结构采用几何控制法进行施工控制,而钢锚箱是实现几何控制的关键环节.文中介绍了苏通大桥索塔钢锚箱制造几何控制的具体方法与要点.  相似文献   

8.
蒋彦征 《上海公路》2012,(3):24-26,13
上海长江大桥主航道桥为双塔双索面斜拉桥,主梁为分离式钢箱梁,主塔采用人字形塔。主跨730 m,居世界已建成同类桥梁第五位。超大跨径斜拉桥的索塔锚固形式主要有钢锚箱和钢锚梁两种,长江大桥采用了在空心塔柱内壁设置钢锚箱的索塔锚固方式,介绍了长江大桥索塔钢锚箱的设计,经有限元计算表明:结构设计满足规范要求,  相似文献   

9.
赤壁长江公路大桥主桥为跨度布置(90+240+720+240+90)m的双塔双索面斜拉桥,桥面全宽36.5m。主梁采用结构刚度大、抗风稳定性好、桥面铺装耐久性好的结合梁。对比双边工字钢、双边箱、开口箱及PK箱4种截面形式钢主梁的截面特性,最终采用受力满足要求且预应力施加效率较高的双边箱截面钢主梁。钢主梁底板既变宽又变厚。钢主梁连接采用栓焊混合的方式,其顶板采用焊接、腹板和底板采用栓接。混凝土桥面板标准段厚度采用26cm。边跨采用加厚桥面板的方式进行压重,边跨桥面板厚度采用59cm,桥面板厚度过渡位置设在次边跨距离辅助墩22m处。索梁锚固采用锚拉板形式,为提高主梁截面宽度利用率,将锚拉板布置于钢主梁外腹板正上方。  相似文献   

10.
《公路》2006,(8):116-116
近日,苏通大桥北索塔上塔柱首节钢混结构段混凝土浇筑成功,塔柱高至224.8 m。苏通大桥北索塔柱高300.4 m,分为下、中、上塔柱。自柱高220.959 2 m,采用中间设钢锚箱,外包混凝土的钢筋混凝土钢锚箱组合结构。钢锚箱为箱形结构,总高度为73.6 m,由30节组成,分A、B、C三种类型,每节  相似文献   

11.
《中外公路》2006,26(4):68-68
近日,苏通长江公路大桥北索塔上塔柱首节钢混结构段混凝土浇注成功,塔柱高至224.8 m。苏通长江公路大桥北索塔柱高300.4 m,分为下、中、上塔柱。自柱高220.959 2 m,采用中间设钢锚箱,外包混凝土的钢筋混凝土钢锚箱组合结构。钢锚箱为箱形结构,总高度为73.6 m,由30节组成,分A、B  相似文献   

12.
某斜拉桥主桥是一座跨径布置为(130m+300m+130m)的双塔双索面预应力混凝土梁斜拉桥,索塔采用倒Y型,斜拉索在桥塔端采用新型空间索面钢锚梁式钢-混组合索塔锚固体系进行锚固。该型锚固体系将锚箱焊在钢锚梁两侧,同时采用钢牛腿替换传统的混凝土牛腿结构,提高了施工速度,改善了结构受力。介绍了该种锚固体系的特点,并采用有限元方法对改型索塔锚固体系的受力情况进行了分析,可为该类型索塔锚固体系设计提供参考。  相似文献   

13.
常泰长江大桥主航道桥为(142+490+1 176+490+142) m公铁合建双塔斜拉桥,采用钢-混混合结构空间钻石型桥塔,索塔锚固区采用钢箱-核芯混凝土组合结构,S4~S39号斜拉索锚固于核芯混凝土上。为实现索塔锚固区斜拉索竖向分力的有效传递,提出方案A(钢齿块+剪力钉)、方案B[钢齿块(加肋)+剪力钉]、方案C(混凝土齿块)、方案D(钢锚箱+PBL剪力键)以及方案E(钢锚箱+承压板+剪力钉)共5种索塔锚固构造方案,从结构受力及施工工艺对5种方案进行比选,并采用模型试验及有限元分析对所选锚固构造方案进行验证。结果表明:方案E剪力钉受力分布均匀,剪力大小适中,且施工便捷,对于S7~S39号斜拉索,推荐采用方案E;对于斜拉索竖向角度较大的S4~S6号斜拉索,钢锚箱在构造和张拉空间上存在冲突,推荐采用方案C。方案E模型试验和有限元分析表明:结构应力、剪力钉受力及钢锚箱构造各板件应力均有安全储备,锚固构造处于线弹性状态,能满足规范及使用要求。  相似文献   

14.
为研究钢桥塔锚固区钢锚箱结构的受力特性及其传力机理,以天津市蓟运河大桥(钢箱梁独塔斜拉桥)为工程背景,基于有限元软件ANSYS 14.0,采用等效板厚法,建立了2个(S1号索和S13号索)钢锚箱结构的全实体单元有限元模型,对其应力分布、索力传递路径以及焊缝传力机理进行了分析。结果表明:钢锚箱各板件Von Mises应力均小于200 MPa,满足规范要求;由承压板、承剪板和加劲板共同构成的闭口箱形截面钢锚箱可以顺畅地传递斜拉索索力;S1号索、S13号索钢锚箱模型的钢锚箱分别表现出梁式和柱式锚箱的受力特性;柱式锚箱承剪板长度选取不宜过长,该桥S13号索钢锚箱承剪板长度最终取为1.4m。  相似文献   

15.
嘉绍跨江大桥斜拉索塔端锚固采用钢锚箱-混凝土组合结构。由于6个塔中钢锚箱均位于130m以上高空,安装时因受风、温度等因素影响,保证其现场安装精度难度很大。嘉绍大桥钢锚箱安装时,基于几何控制法的理念,采用文中所述的"简化棱镜追踪法"对首节钢锚箱进行放样测量,确保其精确调整到位;采用"相对位置控制法"对其余钢锚箱节段进行安装控制,且该方法可大幅减小温度及风的影响。钢锚箱施工完成后实测数据表明:各节钢锚箱的安装垂直度、安装高程、锚点坐标及索塔塔偏均满足相关精度要求。  相似文献   

16.
针对斜拉桥传统钢锚箱构造复杂、吊装重量大,钢锚梁结构需设置环向预应力、索导管定位复杂等问题,研究一种新型钢锚箱锚固结构(主要由混凝土桥塔、U形钢锚固件和钢拉板组成,塔壁不设环向预应力)的适用性。以某大型斜拉桥(采用传统钢锚梁+环向预应力锚固形式)为背景,提出这种新型钢锚箱索塔锚固结构设计方案,建立锚固区节段有限元模型,研究其受力性能。结果表明:新型钢锚箱索塔锚固结构设计方案中,斜拉索水平力基本由新型钢锚箱承担,取消塔壁环向预应力,按钢筋混凝土受拉构件由最小配筋率下裂缝宽度控制塔壁设计,塔壁设计凹形部位便于钢结构锚固;在正常使用工况和断索工况下,新型钢锚箱索塔锚固区受力合理,塔壁应力、裂缝宽度等指标均满足规范要求。  相似文献   

17.
《公路》2020,(1)
以某主跨2×94m的拱形钢桥塔索辅梁桥为背景,基于钢桥塔锚固区构造的合理简化,建立传统和新型钢锚箱构造的空间板壳单元有限元模型,分析了成桥及换索工况下钢桥塔锚固区主要板件及焊缝的应力幅值、应力分布、应力集中现象及索力传递路径。结果表明,两种钢锚箱方案材料用量、施工工艺、斜拉索张拉空间基本相同,锚固区各板件应力均满足规范要求。新型钢锚箱应力集中现象更弱,与钢桥塔连接的整体性更强,索力传递更顺畅。传统钢锚箱焊缝焊接施工工作量较少,斜拉索索力较大时,建议采用新型双横隔板钢锚箱方案;斜拉索索力较小时,考虑到减少焊接施工工作量,可以采用传统单横隔板钢锚箱方案。  相似文献   

18.
以重庆东水门长江大桥索塔钢锚箱制造为例,分析索塔钢锚箱结构及制造难点,阐述锚箱单元合件制作、半箱型钢锚箱整体组装、节段全端面机加工、立式预拼装、钢锚箱热浸镀锌工艺等关键技术,为同类工程施工积累经验。  相似文献   

19.
重庆东水门长江大桥主桥为双塔单索面公轨两用半飘浮体系部分斜拉桥,跨径布置为(222.5+445+190.5)m。桥塔采用天梭造型。主梁采用2片桁双层桥面钢桁梁型式,桥面采用板桁组合体系。斜拉索采用单索面稀索体系,每根斜拉索由139束平行钢绞线组成,最大索力15 000kN。索梁锚固采用在钢横梁中点位置设置大型钢锚箱的型式;索塔锚固采用外置式钢锚箱型式,钢锚箱通过剪力钉与分离式塔肢进行连接,索力由剪力钉、锚箱侧拉板和摩擦力共同承担。开发了用于超大吨位钢绞线斜拉索整体张拉的调索设备。开展板桁组合式桥面板的传力机理理论及试验、超大吨位钢绞线斜拉索的疲劳试验、索塔锚固区足尺模型试验等相关研究,验证了结构的安全性和合理性。  相似文献   

20.
鄂东长江公路大桥索塔锚固区抗裂设计   总被引:1,自引:0,他引:1  
鄂东长江公路大桥为主跨926 m的九跨连续半漂浮体系双塔混合梁斜拉桥,斜拉索塔端锚固方式采用钢锚箱结构。文章简要介绍了大桥主桥桥型布置、索塔锚固区方案构思及钢锚箱构造设计,分析了钢锚箱的工程应用及力学特性;简述了索塔锚固区足尺模型试验情况和主要计算结果,并对索塔锚固区抗裂设计进行了阐述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号