首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈明 《铁道勘察》2023,(1):126-131
为研究浅埋暗挖隧道近距离下穿对邻近高铁特大桥的影响,以北京某地铁暗挖区间线路,与桥桩夹角为40°,净距仅2.1 m为工程背景,建立三维数值模型,模拟地铁左、右线暗挖区间侧穿高铁桥桩的施工过程,揭示既有高铁桥墩的变形特性。研究表明,未施加防护措施下,暗挖施工使高铁特大桥墩顶产生的最大竖向位移为5.03 mm,最大横向位移为3.23 mm,最大纵向位移为3.96 mm,不满足控制标准;在采取隔离桩及注浆加固措施的工况下,桥墩顶最大竖向位移为2.91 mm、最大横向位移为1.71 mm;最大纵向位移为1.13 mm,满足控制标准。结果表明,暗挖隧道小角度近距离下穿高铁特大桥方案可行,施作隔离桩及地表注浆加固措施可有效降低隧道施工对桥梁的影响。  相似文献   

2.
为探究大曲率盾构隧道在急转弯过程中对邻近桥梁的影响,以上海某急转弯隧道穿越桥梁工程为背景,基于Midas数值模拟软件,建立急转弯隧道近穿桥梁三维数值模型,分析急转弯隧道施工对桥梁桩基的影响,并结合现场施工方案,分析所采用地层加固措施对减小桥梁沉降变形控制效果,主要结论如下:(1)受盾构隧道近穿既有桥梁影响,地表沉降槽宽度为3.44D(D为隧道直径);在盾构穿越桥梁时对地层扰动最大,地表累计沉降量占最大沉降量的90%。(2)盾构近接既有桥梁,桩身变形主要以Y向(纵向)变形为主,在盾构穿越桥梁时,桩身倾斜变形量最大。(3)采用MJS工法对土体进行加固之后,地表沉降量、桥梁桩基水平位移量大幅降低,从数值模拟结果看,桥梁沉降变形减小38%,隧道结构上浮量减小79.5%。  相似文献   

3.
研究目的:邻近开挖会对桥梁桩基造成不利影响,严重时将影响高速铁路的运营品质与安全。本文通过现场原型试验,获得深厚软土地区3种开挖工况下邻近桩基的工作性状,采用ABAQUS有限元软件对试验过程进行三维数值模拟,通过与试验结果的对比分析,验证计算模型与参数的合理性。基于验证后的计算模型,探讨无支护开挖主要参数(基坑宽度、边缘净距、基坑深度)对桩身变形与内力的影响规律。研究结论:(1)邻近开挖引起的桩身位移与弯矩分布范围约为设计时主动受力桩的2.1~2.8倍,劣化了桩基的工作状态,在高速铁路运营维护中应引起高度重视;(2)基坑宽度大于5倍的边缘净距时,可忽略继续向外侧加宽基坑对邻近桩基的影响;(3)当边缘净距大于30 m(相当于6倍的基坑宽度)时,开挖窄浅基坑(宽度≤5 m且深度≤3 m)对邻近桩基的影响不大;(4)桩顶水平位移、桩身最大弯矩随深宽比增加大致呈指数型增长趋势,且间距越小,其增长速率越大;(5)本研究成果可供高铁桥梁桩基设计、施工、运营维护借鉴。  相似文献   

4.
在邻近既有线的新建线地基上进行大面积群桩施工可能对既有线带来不利影响。依托鲁南高速铁路并轨段路基工程,开展不同桩型群桩成桩现场试验,研究大面积群桩成桩对邻近场地变形的影响,并将试验成果应用于新建线地基加固方案中。群桩施工扰动引起的邻近场地水平位移与竖向位移随成桩排数的增多呈现先增大后逐渐稳定的趋势,位移发展经历快速、慢速和逐渐稳定3个阶段;引孔深度15 m及20 m成桩工艺对静压管桩挤土变形的防控效果显著;以1. 5 mm为变形特征值时,管桩群桩引起地表隆起变形范围在0. 4倍桩长以内、横向变形范围在2倍桩长以内,微型桩及灌注桩引起邻近土体变形范围都在5 m以内;采用灌注桩群桩对鲁南高速铁路并轨段路基进行地基加固,既有路基坡脚测点向外位移最大值在1. 0 mm以内,表明既有路基基本不受施工扰动影响。  相似文献   

5.
研究目的:杭州市备塘路高架改造工程邻近已运营的地铁1号线,桩距离地铁最近为12.43 m,桩长67.9 m。因地铁1号线已有裂缝、渗水等状况出现,桩采用全套管钻孔灌注桩施工。为研究高架桥桩施工对邻近地铁隧道变形的影响,在桥桩施工过程中对周围深层土体水平位移、孔压、隧道结构水平位移和沉降进行监测。研究结论:(1)已运营地铁隧道出现渗水、裂缝现象时,在邻近既有隧道的桩基施工时采用全套管钻孔灌注桩施工对地铁影响较小,满足地铁隧道安全保护要求;(2)全套管钻孔灌注桩施工时,孔压对埋深较浅隧道的影响波动较大,但恢复也较快,对埋深较深的隧道影响恢复较慢,相对于埋深较浅的隧道来说,其变形较大;(3)全套管钻孔灌注桩施工时,上层土体位移较大,对埋深较浅的道床沉降产生较大的影响,而深层土体位移较小,对埋深较大的隧道影响较小;(4)本研究成果对桩邻近已运营地铁隧道等类似施工工程具有参考价值。  相似文献   

6.
在地铁工程建设中,盾构法施工得到推广使用。而当近距离侧穿建筑物的桩基时,盾构推进会对桩基周围土体及桩基产生影响,从而引起地表沉降,危及建筑物的安全。此文以深圳地铁某隧道区间盾构施工近距离侧穿一建筑物桩基为工程背景,选取桩基与隧道间距最小的断面,采用有限元软件,建立数值计算模型,研究盾构推进对桩基周围土体及桩基的影响程度,以及造成的地表沉降。研究结果表明:桩身最大侧向位移出现在隧道轴线位置附近,桩的竖向沉降量沿桩长变化很小,桩身弯矩沿桩身分布,有正弯矩区和负弯矩区,桩身轴力沿桩长逐渐增大,到隧道轴线位置时达到最大值。隧道顶正上方地表沉降最大,为12.6 mm,两侧沉降量逐渐减少,形成一个横向沉降槽。  相似文献   

7.
魏向阳 《铁道建筑技术》2021,(2):136-140,173
以济南黄河隧道南岸接收工作井盾构机出井吊装为工程背景,借助有限元分析软件,重点分析东线隧道贯通及吊装施工对黄河隧道南岸工作井的变形及受力影响。结果表明:(1)东线隧道贯通时,地连墙最大水平位移为-1.13 mm,主体结构最大水平位移为-0.92 mm;吊装施工时,地连墙最大水平位移为-1.06 mm,主体结构最大水平位移为-0.86 mm,受吊装荷载的影响,地连墙顶部出现向坑外的位移。(2)东线隧道贯通、吊装施工时环框梁的最大弯矩值为16325 kN·m,出现在第二道环框梁中部位置;受履带吊吊装施工超载影响,主体结构最大弯矩值为3915 kN·m,出现在东墙(竖向)支座处。(3)受隧道开洞及施工超载影响,主体结构最大弯矩值为2837 kN·m,出现在北墙支座处;受结构埋深影响,环框梁最大弯矩值为9634 kN·m,出现在第三道环框梁端部位置。盾构出井吊装方案可行,施工过程对工作井影响较小,能保证工作井安全;此外,在满足吊装要求的同时,履带吊应尽量远离接收井,以减小对主体结构的影响。  相似文献   

8.
双孔隧道盾构施工对邻近桩基变形和内力的研究   总被引:1,自引:0,他引:1  
在大型有限差分软件FLAC3D平台上进行二次开发,利用内嵌FISH语言编程,主要从隧道的不同开挖顺序方面,对双孔隧道盾构施工过程中邻近基桩的变形和内力进行数值仿真模拟,模型考虑盾构前方土仓压力、盾尾同步注浆、注浆凝结和未凝结两种状态以及衬砌管片施加等施工参数。研究表明:双孔隧道施工对邻近桩基的影响要大于单孔隧道施工对桩基的影响;隧道不同的开挖顺序对邻近桩基的位移和内力产生不同影响:先开挖离桩远的隧道,再开挖离桩近的隧道的方案,对桩基的内力和位移影响最大;两条隧道同时开挖对桩的内力和位移基影响最小。  相似文献   

9.
济南市双线明挖隧道和双线盾构隧道先后下穿既有铁路桥梁。为保护既有铁路桥墩和桥桩,拟定采用隔离桩和不采用隔离桩两种方案,通过数值模拟研究了明挖隧道和盾构隧道施工时铁路桥梁的桥墩、桥桩位移变化规律及隔离桩的隔离效果。结果表明:明挖隧道围护桩施工+基坑开挖、主体结构施工+覆土回填、盾构隧道下穿引起的桥墩竖向位移分别占桥墩总竖向位移的60.14%、27.07%、12.79%;受围护桩与隔离桩桩长的影响,明挖隧道及盾构隧道施工对24.5 m深以下桥桩的保护作用减弱;与未采用隔离桩相比,采用隔离桩后桥墩最大累计竖向位移与桥桩最大水平位移分别减小了68.5%、60.7%,隔离桩对变形的控制效果明显。  相似文献   

10.
盾构隧道近距离侧穿既有高速铁路高架桥,将引起桥梁和轨道结构的变形,影响列车正常运行,甚至造成运营事故。以南京市轨道交通5号线下穿宁杭高铁为例,采用MIDAS GTS分析采取加固措施前后盾构隧道下穿高速铁路引起的桥梁位移和桥桩受力变化规律。结果表明,采取隔离桩和袖阀管注浆的加固措施可以有效保护高铁桥梁的安全,使其满足双线隧道贯通后最大沉降小于1mm的要求。  相似文献   

11.
新建隧道临近既有隧道时,隧道施工会引起围岩的应力重分布,从而对既有隧道产生影响。为了研究新建隧道施工对既有隧道的影响,以黄土地区某隧道工程为依托,利用有限元软件,通过数值模拟计算,分析开挖方法及支护措施对既有隧道最终位移场、应力场分布及围岩塑性区演化的影响,得出如下结论:采用台阶法时会对既有隧道产生扰动,引起既有两隧道的最大位移分别为0. 97 mm和2. 56 mm,均出现在拱顶处,总体位移较小;采用3种不同的支护措施时,最大应力均出现在距离最近既有隧道的仰拱处(不超过600kPa);塑性区主要分布在最近既有隧道的仰拱处,但不会引起塑性破坏;3种支护方案对应的整体模型最大总位移分别为80. 3 mm、77. 8 mm和89. 2 mm,管棚超前支护对变形控制效果明显。  相似文献   

12.
孙武鹏 《铁道建筑》2023,(3):113-117
甬金高速公路(宁波—金华)改扩建明挖工程下穿杭温高速铁路(杭州—温州)桥梁处挖深超过20 m。本文首先介绍了改扩建明挖工程施工基本原则,然后研究了明挖深埋隧道施工方案,基坑围护、铁路桥墩保护等技术问题,提出对基坑采用钻孔咬合桩+四道内支撑体系围护,对既有高速铁路桥墩基础采用钻孔桩隔离+搅拌桩作为止水帷幕。经数值模拟计算,基坑、高速铁路桥梁桥墩变形均小于规范限值。  相似文献   

13.
扬州市江平东路三期工程新建双塘路隧道长距离邻近既有高速铁路施工,通过数值模拟分析了隧道施工引起的既有高速铁路路基变形,并对隧道基坑施工的安全性进行了分析。结果表明:新建隧道施工引起的高速铁路路基变形主要是沉降,水平变形小;既有高速铁路路堤稳定安全系数最小值为1.57,大于规范规定的最小值1.25;隧道基坑围护桩变形、基坑稳定性均满足相关规范要求。隧道邻近既有高速铁路施工安全性可得到保障。  相似文献   

14.
利用MIDAS/GTS有限元程序分析了深圳地区中软土地层中群桩荷载对三心圆类马蹄形隧道的影响,研究群桩布置以及桩与隧道间距的变化对隧道拱顶位移的影响情况。研究结果表明:隧道拱顶位移随桩与隧道间距以及沿隧道走向和法向桩间距的增加而减小,沿隧道走向桩间距的变化对隧道拱顶位移的影响大于沿隧道法向桩间距的变化。隧道因群桩荷载引起的位移的防护措施有:隧道拱顶位移随受荷桩桩长的增加而减小,且受荷桩桩长与隧道埋深比值应大于1,应避免受荷桩桩端处于隧道所在平面,否则将引起最大的隧道位移;采用设置隔离桩的方法减小隧道拱顶位移时,宜增加隔离桩与隧道间距,当隔离桩桩长与邻近桩桩长之比大于1.2时能起到更好的遮拦效果。  相似文献   

15.
为探究盾构施工过程中高铁桥墩的变形特征,以济南轨道交通1号线和2号线4条隧道下穿京沪高铁同一跨桥梁工程为例,开展了现场墩顶位移监测试验,并对2号线地铁隧道盾构掘进施工过程中邻近高铁墩顶的位移数据进行了分析。通过有限元法研究了隔离桩、隧道位置和地铁列车运行等不同工况下,下穿邻近高铁桥梁承台的竖向振动位移、振动加速度及其最大值的分布规律。研究结果表明:隔离桩的施工满足相关规范对盾构隧道施工期高铁桥墩位移的要求;1号线和2号线左线列车运行引起的高铁承台竖向振动位移均较大,建议对其采取轨道减振措施;隧道距离隔离桩顶部或底部越近,隧道引起的高铁承台振动位移越大。  相似文献   

16.
为了解决小净距重叠隧道下穿准高速铁路的安全施工问题,采用数值计算的方法,对上下重叠隧道不同施工顺序引起的地层变形、管片结构位移和受力情况进行分析。结果表明,采用"先下后上"开挖方式时,地表沉降、隧道管片结构竖向位移及其弯矩均小于"先上后下"开挖方式。当采用"先下后上"盾构掘进时,上隧道引起的最大地表沉降为13. 934 mm;采用"先上后下"时,最大地表沉降为15. 516 mm(沉降控制值为10 mm)。对铁路线路、上下隧道间夹层土体和铁路路基软土进行加固后,地表沉降数值计算值为9. 525 mm,实际观测最大值为5. 9 mm(均在控制值范围内)。该研究结论为重叠隧道顺利下穿准高速铁路施工提供了关键技术支持。  相似文献   

17.
地铁盾构隧道下穿既有铁路桥梁桥墩施工不可避免地会对周边岩层产生一定的扰动,导致铁路线路的不平稳,进而危及行车安全。以济南地铁9号线工程下穿济莱正线及济南东站铁路枢纽为例,通过Abaqus软件建立数值模型,模拟在不加固、钢管桩加固、钻孔桩加固3种工况下,盾构隧道下穿高速铁路桥梁桥墩引起的变形情况。结果表明:(1)无加固措施情况下地铁右线盾构施工引起的济莱59#墩的水平位移3.6mm不满足设计要求;(2)考虑隔离桩及加固措施后,墩顶变形进一步减小;(3)钻孔桩隔离与钢管桩隔离方案对墩顶的变形控制效果接近,根据工程经济性及现场地质条件,采用钢管柱加固措施较为合适。研究成果可为同类型工程施工设计提供参考。  相似文献   

18.
针对广州地铁11号线穿越既有桥梁桩基础工程,提出对临近隧道边墙的桥梁基桩进行加固处理的技术方案。参考相关隧道穿越工程设计经验和规范,提出采用围岩位移和基桩位移双指标来控制隧道施工对既有桩基的影响,并采用有限差分数值分析软件MIDAS/GTS进行了验算。结果表明,对侵入隧道边墙的基桩进行托换处理,对距离隧道边墙1.5倍桩径范围的基桩进行加固处理,可将穿越施工时基桩沉降控制在5 mm以内,拱顶沉降控制在50 mm以内。该方案实施后,实际监测值与数值模拟计算值接近,托换基桩的最大竖向位移始终在控制值以内。  相似文献   

19.
对临近某高铁立交工程的基坑开挖、顶进施工、U形槽开挖过程对高铁桥梁的影响进行分析研究。以封闭式路堑下穿高铁桥梁段为背景,采用大型通用有限元软件ABAQUS建立结构的三维数值模型,模拟由基坑开挖、下穿框架桥结构顶进至U形槽开挖的完整开挖过程,对比分析常规防护方案和加强防护方案对高铁桥梁的影响。分析结果表明:常规支护加固开挖时,桥墩基础处土层最大横向位移影响值为0.5 mm,桥墩基础处土层最大竖向位移影响值为0.8 mm;加强型支护加固开挖时,桥墩基础土层最大横向位移影响值为0.15 mm;桥墩基础处土层最大竖向位移影响值为0.34 mm,加强防护措施可有效控制高铁桥梁的附加沉降量,确保高铁的安全运营。  相似文献   

20.
为研究盾构隧道下穿高铁路基的沉降控制措施及其效果,以西安地铁 1 号线三期工程盾构下穿徐兰高铁 段工程为背景,通过对现行规范及既有类似工程案例的分析、结合既有无砟轨道的现状,确定了本工程隧道下穿 高铁无砟轨道路基的控制标准,并以此选定了盾构隧道下穿高铁路基的盾构、加固以及辅助控制变形措施,依据 施工方案并结合工程实际情况,理论分析了影响分区的判别准则及判别阈值,进而划分了铁路路基受到不同影响 的分区,通过数值模拟的方法分析拟定施工方案的实施效果。结果表明:采用盾构下穿高铁路基避开 CFG 桩 (水泥粉煤灰碎石桩)且进行地面袖阀管注浆加固的方案能够满足工程要求,道床的最大竖向位移为 4.716 mm, 最大水平位移仅为 0.301 mm;CFG 桩的最大竖向位移为 11.93 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号