首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
对传统清扫车的工作原理以及整车各工作部分的功率需求进行了分析,提出了一种新型的油电混合动力清扫车整车设计方案。依据该方案的整车控制系统结构,制定出混合动力清扫车油门踏板控制策略、驱动电机扭矩控制策略、发动机转速闭环控制策略以及高压电控制策略,以满足整车功能需求。  相似文献   

2.
徐阳 《重型汽车》2005,(4):33-34
1引言 串联式混合动力公交车与传统车辆有所不同,车辆的动力是由电池组为电动机提供动力源,由加速踏板调节电动机的转速和功率以适应车辆行驶工况的需求,而传统车辆中为车辆提供动力的发动机在这里只是用于带动发电机发电为电池组充电.实际中,根据串联型驱动模式特点,发动机-发电机组与动力电池组之间的匹配要求较严格,发动机-发电机组应能自动启动和关闭,以避免动力电池组过放电.  相似文献   

3.
提出了一种基于设定电池组充电曲线的串联式混合动力汽车动力总成滑模控制策略,动力总成控制系统中设置了两个鲁棒性强的固定边界层滑模控制器,分别控制发动机转速和转矩,使发动机工作点处于效率最优区域;同时设计了适当的电池组充电曲线以利于延长电池组寿命.采用ADVISOR软件的仿真结果,验证了提出策略的有效性和相对传统策略的优越性.  相似文献   

4.
为提高ISG混合动力汽车的燃油经济性,开展控制规则优化与转矩分配策略研究,以保证发动机工作在高效区域。从控制发动机输出负荷角度出发,综合考虑ISG效率特性和电池组充放电特性,对发动机、ISG、电池组稳态工作区域进行划分。以混合动力系统工作模式分析为基础,提出各模式下能量管理策略,并根据车辆行驶过程中工作模式动态切换的需要,制定了模式切换策略。以IVECO并联混合动力汽车为例,按照ECE+EUDC工况进行了基于优化规则的转矩分配策略硬件在环仿真,结果表明采用基地规则的转矩分配策略能有效地协调转矩在发动机和ISG之间的分配,综合油耗比原车降低20%。  相似文献   

5.
为了优化轻度混合控制策略下的CFA6470混合动力电动汽车能量总成控制系统,设计了能量总成控制器,并将其分成5个模块;分析了节气门开启角与车辆行驶挡位的优化方法,轻度混合时的能量分配策略;提出了基于能量守恒原理的电池组荷电状态估计方法,并根据ECE-EUDC工况,在2种不同的期望车速下对设计的控制系统进行了仿真。仿真结果表明:在发动机的期望工况下,所设计的能量总成控制系统能够实现能量在发动机、驱动电机以及电池组之间的合理分配,电池组的荷电状态变化规律与车辆行驶状态相符合。  相似文献   

6.
<正>虽然,目前市场中有很多混合动力车型,但是根据工作原理无非是串联、并联和混联。而且,大部分混合动力系统电池组缺电时发动机都会随时驱动车辆并为发电机提供电力、为电池组充电。但是,来自枥木工厂的工程师却让i-MMD混合动力系统反其道而行之。这套混合动力系统发动机仅在巡航状态单独驱动车辆,中低速根据需要仅用来为两台电机提供动力,并且电动机输出大于发动机。整个混动系统通过"切换"两套动力的运行时机,  相似文献   

7.
正一、并联式混合动力电动汽车基本组成并联式混合动力电动汽车主要由发动机、电动机、电动机控制器、蓄电池组、动力合成器和机械传动装置等组成,如图1所示。如果蓄电池组可通过外接电源进行充电,则称为插电式并联混合动力电动汽车。图1中带箭头的实线和虚线表示了车辆在运行过程中能量的流动方向。二、并联式混合动力电动汽车工作模式1.纯粹的发动机驱动模式  相似文献   

8.
《汽车杂志》2009,(12):44-44
斯巴鲁这款混合动力旅行概念车Hybrid Tourer,装配一台涡轮增压水平对置汽油发动机。前置的电动发动机为车辆的电力系统提供所需的电力并偶尔辅助行驶,除此之外还有一台10kW的电动机将会在必要时担任驱动车轮以及为锂离子电池组充电的任务,  相似文献   

9.
本文根据清扫车副发动机、风机及液压泵的工况特点,分析了风机与管路系统联合工作特性,得出了风机与副发动机和液压油泵的最佳匹配点,为清扫车工作装置的设计与元件的选型提供了理论依据。  相似文献   

10.
方昉 《摩托车信息》2007,(14):66-66
美国洛杉矶万程汽车公司近期推出的“冒险1号”新型三轮摩托车,将摩托车的驾驶乐趣与汽车的安全舒适体验完美结合在一起。 “冒险1号”拥有两种混合动力和一种纯电动配置,可使用汽油、酒精或二者的混合体。发动机带有一台15kW~20kW的发电机,以锂离子电池组充电,无污染,零排放。  相似文献   

11.
针对P3并联式混合动力系统,制定了发动机、电机功率分配策略。应用Modelica语言搭建整车模型,分析了混合动力系统的工作模式,比较了标准试验工况下某车型传统动力和P3混合动力的燃油经济性,并研究了不同最佳油耗区最小功率值对混合动力系统燃油经济性的影响。结果表明,该P3混动系统通过实现纯电、行车充电、发动机单独驱动、电机助力、制动回收等工作模式,使车辆综合油耗下降16.3~23.9%;随着最佳油耗区最小功率值的增加,系统油耗先降低后增加。仿真结果与试验结果相吻合,适用于混合动力系统的开发与研究。  相似文献   

12.
在分析单电机和双电机混合动力电动车发动机怠速充电工况下电池能量稳定性控制要求的基础上,提出了一种怠速充电工况电池SOC平衡的主动控制策略,并给出相应控制过程的能量控制目标值计算公式和相应的分析。通过对所提出的怠速充电工况电池SOC平衡控制策略进行仿真和实车测试,结果表明,该控制策略能有效控制电池SOC平衡,怠速充电过程中电池主动能量的过充和过放控制的稳定性也得到改善。  相似文献   

13.
本文在分析了插电式混合动力清扫车工作原理的基础上,提出了基于整车性能要求的混合动力清扫车动力电池匹配计算方法。  相似文献   

14.
本文提出一种基于Sepic-Zeta混合斩波电路的动力电池组双向高速均衡器,该均衡器在电池组3种不同的工作状态下采用不同均衡拓扑电路和均衡控制策略。电池组充电状态下,均衡电路等效为Sepic斩波电路,选择电池组中能量最高的单体电池作为Sepic斩波电路的输入端进行均衡放电,均衡放电电流连续;电池组放电状态下,均衡电路等效为Zeta斩波电路,选择电池组中能量最低的单体电池作为Zeta斩波电路的输出端进行均衡充电,均衡充电电流连续;电池组静置状态下,选择电池组中能量差异性最大的单体电池进行均衡放电或均衡充电,其对应的等效电路为Sepic或Zeta斩波电路。该均衡器拓扑电路原理简单,均衡电路容易实现,均衡能量易控制,均衡电流连续、可控,因此均衡速度快、均衡效率高。最后,搭建锂离子电池实验平台进行电池组3种工作状态下的均衡实验,验证了该方案的可行性。  相似文献   

15.
正第1节混合动力汽车是咋"混"的混合动力系统是指两种不同形式的动力组合在一起,共同作为驱动汽车前进的动力系统,其动力形式主要有燃油发动机、燃气发动机、电机等。但通常我们所称的混合动力汽车,是指采用燃油发动机与电机两种动力组合的汽车,简称"油电混合"。虽然都是采用发动机和电机来驱动汽车前进,但并不都是采用燃油和电两种能量供给方式。只采用燃油一种供给方式的混合动力汽车,我们通常称其为"普通混合动力汽车";而可以采用外接电源充电的混合动力汽车,被称为"插电式混合动力汽车"。根据电机在汽车动力系统作用的大小,可以将混合动力细分为轻混合动力和重混合动力两种形式。  相似文献   

16.
在镍氢电池生热理论的基础上,根据混合动力汽车试验循环工况获得的充放电电流计算得到电池的生热功率,建立了电池组散热系统的散热模型。应用计算流体力学方法对电池组的温度场进行了数值模拟仿真分析,并进行了混合动力汽车试验循环工况下镍氢电池组的温度场试验。结果表明,模拟值与试验值吻合;电池组具有良好的散热效果,可满足混合动力汽车在生热、散热方面对镍氢电池的使用要求。  相似文献   

17.
电动汽车动力电池组由于生产和运行工况等不同,会使组内电池的电量不一致,进而造成电池组使用寿命降低、安全风险增大等一系列问题。论文针对这些问题,在传统电感主动均衡方案的基础上提出了一种多层均衡方案。这种方案第一层以电池荷电状态(SOC)为均衡参数,高层则以电池工作电压为均衡参数,通过多层均衡系统的综合作用来达到电池组间的能量转移。在该方案的基础上,以八个电池为例建立了Simulink仿真模型,并进行恒流充电、静置和恒流放电三个工况的仿真测试。经过仿真测试,在上述三种工况中各电池的SOC随着时间会逐渐趋于一致。仿真结果表明,该方案在充电、静置、放电工况下都能有效完成能量转移任务,对电池组进行了电能的均衡,证实了该方案有效性。  相似文献   

18.
比亚迪F3DM     
《汽车与运动》2012,(9):112
比亚迪早在几年前就推出了F3DM混合动力车型。但在严格意义上,F3DM并不属于油电混合动力车型。而是被称为"DM双模"车型。即是采用电动(EV)模式和混合动力(HEV)模式相结合的驱动模式。仅仅在加速工况时发动机才直接输出扭矩,其他工况下发动机只为蓄电池充电。所以DM技术实际上是PHEV(外接充电式混合动力汽车)技术的另一种称呼,是混合动力汽车向纯电动汽车发展的过渡性技术,PHEV是在混合动力汽车上增加了纯电动行驶工况,并且加大了动力电池容量,所以其燃油经济性比普通油电混合车型更高,二氧化碳和氮氧化物排放也更少,更加环保。  相似文献   

19.
丰田混合动力是属于串并联的混联结构方式,发动机是以无级调速的方式来驱动车轮。发动机、电机、电池和车轮这四者之间的逻辑关系是:发动机驱动车轮和电机1;电机1和电机2给电池充电;电池供电给电机1来启动发动机;电池供电给电机2来驱动车轮;车轮驱动电机2发电。如图1所示,发动机、电机、电池、车轮这四者之间能有机的结合主要是靠动力分配齿轮组和变频器共同来实现。动力转换分配逻辑分析和变频器原理分析这两点是丰田混合动力系统的核心,掌握了主体那么整体就自然清晰了。  相似文献   

20.
并联混合动力控制系统硬件在环仿真平台研究   总被引:1,自引:0,他引:1  
自主开发了并联混合动力硬件在环控制系统仿真平台。在实验室仿真平台上,实现了混合动力起动、怠速停机、怠速充电、加速助力、运行工况发电、制动能量回收功能。对各个工况下的流程图、标定变量、二维和三维脉谱进行了验证,实现了预期的混合动力控制功能。同时进行了混合动力电控单元(ECU)与电机电控单元(ISGC)之间的CAN通信调试。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号