首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
基于直接横摆力矩控制方法,设计了一种前馈一反馈补偿控制的车辆稳定性控制器.其中控制器以4WS为期望的车辆模型,通过前馈补偿控制可使车辆的质心侧偏角趋于理想值,而反馈补偿控制可使车辆模型在较好地跟踪理想模型的基础上,有效抵抗外界干扰.通过前轮角阶跃输入与正弦输入仿真,就控制效果的稳定性与对前轮转角的跟随特性两方面而言,所设计的控制系统能较好地控制车辆的操纵稳定性.  相似文献   

2.
汽车电子稳定性控制系统(electronic stability program,ESP)可以改善汽车在极限工况下的操纵性和稳定性。建立两自由度车辆模型,基于H∞控制理论研究车辆稳定控制系统,理论上证明电子稳定性程序控制ESP对汽车稳定性作用明显。数字仿真结果表明,该控制方法可有效改善车辆转向时的侧偏角和横摆率的响应特性。  相似文献   

3.
针对底盘关键子系统对车辆行驶稳定性影响能力与有效作用区域的差异,综合考虑轮胎的非线性特性与各子系统间动力学耦合关系,建立整车14自由度非线性动力学模型,分别运用非线性H∞控制和模糊控制对转向、悬架和制动子系统进行控制性能研究,采用多级递阶控制理论设计了组织级、协调级和执行级的车辆稳定性多级协调控制系统。运用滑模控制理论与轮胎逆模型将组织级得到的保持车辆行驶稳定性所需的广义目标控制力和力矩转化为轮胎侧偏角和滑移率,再基于功能分配原理对各子系统控制功能进行协调,实现了底盘复杂系统的功能解耦,并对整车稳定性协调控制系统进行了仿真分析。仿真结果表明:防抱死制动系统与半主动悬架系统联合控制对车辆稳定性的控制效果相对较差,主动前轮转向的加入可以明显改善车辆的操纵稳定性。相对于汽车底盘子系统联合控制,多级递阶协调控制能更好地改善整车行驶稳定性,使制动距离减小,保持滑移率基本在目标值0.2附近。  相似文献   

4.
汽车智能电子节气门控制系统的研究   总被引:7,自引:1,他引:6  
介绍汽车智能电子节气门控制系统(ETCS)的组成及其控制原理.指出利用智能电子节气门可实现怠速控制、巡航控制和车辆稳定性控制等。司机可通过模式开关选择希望的驾驶模式,实现对车辆的智能控制。  相似文献   

5.
车辆稳定性控制策略之比较   总被引:2,自引:2,他引:0  
讨论了近年来车辆稳定性控制策略的研究发展趋势;分析了多种控制方法和理论在解决非线性车辆稳定性控制策略上各自的特点及局限性;总结了滑模变结构控制理论的应用前景。  相似文献   

6.
基于车辆纵横向动力学耦合模型,研究了自动化公路系统车辆换道纵横向耦合控制.假定换道过程中车辆横向加速度满足梯形约束,根据期望换道轨迹计算车辆换道时的期望横摆角和横摆角速度,依靠车载传感器获得车辆横摆角速度信息.采用有限时间滑模趋近律,设计了车辆换道纵横向耦合变结构控制规律.基于李雅普诺夫稳定性理论,对控制系统的稳定性进行了分析,得到了系统渐进稳定的充分条件.仿真结果表明:采用该控制规律,车辆在纵向速度变化的情况下能够良好地跟踪期望换道轨迹,跟踪误差小于0.06 m.  相似文献   

7.
为研究智能网联车辆(CAV)对交通流稳定性的影响机理,对CAV车辆与人工车辆(HMV)构成的异质交通流,先建立车道管理策略下的交通流分配模型,提出车队管理策略下的车辆编队规模计算方法;再基于CAV与HMV车辆的跟驰模型,运用李雅普诺夫理论,搭建交通流稳定性分析框架;最后,构建异质交通流稳定性判别式,对比分析在不同管理策略下异质交通流稳定性的演变机理。研究结果表明:在随机混行条件下,当车辆速度大于23.12 m/s或CAV车辆的渗透率高于92%时,异质交通流处于恒稳定的状态;在车道管理策略条件下,当CAV车辆的渗透率低于60%时,异质交通流趋于稳定,随着CAV车辆渗透率的增大,通用车道稳定性开始逐级变差;当车辆采取编队控制算法且CAV车辆渗透率大于19%时,异质交通流处于稳定状态。CAV车辆在道路中随机混行,会对交通流的稳定性造成不良影响,而通过车道管理和编队控制,交通流的稳定性得到了明显改善。该研究可为智能网联汽车的安全管控及相关交通规划提供理论指导与借鉴。  相似文献   

8.
车辆稳定性控制策略研究   总被引:6,自引:4,他引:2  
以滑模控制、线性二次型最优控制以及PID控制三种控制理论为基础,运用不同的控制策略,基于直接横摆力矩控制方法,设计了车辆稳定性控制器,并进行了控制效果的仿真分析和比较。就控制策略而言,单独控制质心侧偏角、以及对质心侧偏角和横摆角速度进行联合控制,在车辆运行的大多数工况下,控制效果要优于单独控制横摆角速度;就控制理论而言,滑模控制具有较强的鲁棒性和应用性。由于稳定性控制器应重点对低附着系数路面上的车辆进行控制,针对研究对象的运行工况,滑模控制下的质心侧偏角控制和联合控制策略具有明显的优越性。  相似文献   

9.
选取三轴货车为研究对象,基于车辆动力学仿真软件ve Dyna环境建立运输车辆行驶动力学仿真平台,并对模型的有效性进行验证。通过设置角阶跃典型行驶道路工况,分析车辆行驶动力学参数和道路参数等因素对运输车辆发生侧翻的影响机理。仿真结果表明,车速、方向盘转角等动力学参数对运输车辆的侧倾稳定性影响较大,道路参数对运输车辆的侧倾稳定性影响较小。建立的运输车辆行驶动力学仿真平台,能够很好的模拟真实车辆的实际工况,为进一步研究运输车辆的防侧翻控制提供较好的理论基础。  相似文献   

10.
利用Adams/CAR建立整车动力学仿真模型,在Matlab/Simulink中建立一种车辆稳定性控制器,并通过Adams/Control模块实现两者之间的联合仿真。阶跃仿真和正弦仿真结果表明:设计的控制器能有效控制车辆的稳定性,验证了联合仿真方法的可行性,为车辆稳定性控制系统控制策略的快速开发提供参考。  相似文献   

11.
汽车的主动前轮转向作为汽车主动控制的一个重要组成部分,可以改善车辆的操纵稳定性;横摆角速度与质心侧偏角作为表征车辆操纵稳定性的2个主要指标,可以作为车辆处于稳定状态的参考。基于模型预测控制方法,在汽车线性二自由度模型的基础上,使用相同工况下理想的横摆角速度与质心侧偏角作为参考,设计了模型预测控制器,将二自由度汽车模型与CarSim整车模型进行了联合仿真。结果表明:模型预测控制方法相对PID控制方法更能有效地提高汽车的主动安全性。  相似文献   

12.
考虑空气力的车辆三自由度转向模型与状态方程   总被引:1,自引:1,他引:0  
为了减小空气力的影响,简化车辆多自由度转向动力学方程,考虑了空气力的影响,建立了车辆三自度转向运动的动力学模型.以质心侧偏角、横摆角、横摆角速度、侧倾角、侧倾角速度为状态变量,以前轴转角及侧风作用力为输入,以质心侧偏角、横摆角、横摆角速度、侧倾角为输出,推导了车辆三自度转向运动的动力学模型的状态方程.以前轴主动转角脉冲为输入,对状态方程的可信度进行了验证.与利用线性二自由度转向模型的仿真结果相比,利用三自由度转向模型与其状态方程得到车辆质心侧偏角与横摆角速度的绝对值均较小,在高速情况下,空气力会增强车辆的不足转向特性.采用两种模型得到的车身侧向偏移均大于试验值,但三自由度模型的仿真曲线非常接近试验曲线.可见,三自由度状态方程可信度高.  相似文献   

13.
针对四轮前后轮转向车辆的稳定车道线保持,提出集成直接横摆力矩和车道 线保持的串级控制策略.主控制器实现车道线保持控制;副控制器实现车辆稳定性控制. 主控制器的前轮转角作为副控制器的参考输入,计算期望滑移角和期望横摆率.后轮转角 和横摆力矩作为副控制器控制输入,基于LQ算法计算补偿后轮转角和横摆力矩,实际滑 移角和实际横摆率跟踪期望滑移角和期望横摆率.在副控制器车辆稳定性控制基础上,主 控制器实现准确地车道线保持控制,保证车辆在车道内安全行驶.实验结果表明,实现准 确车道线保持,并保证车辆的稳定性和操纵性.  相似文献   

14.
在行驶过程中的汽车稳定性、安全性和舒适性会受到侧风的严重影响,因此,侧风稳定性成为汽车空气动力特性的一个重要组成部分。文章以挂车车身为研究对象,采用CFD数值模拟对侧风作用下的汽车气动特性进行了研究,考虑风速、车辆位置以及车辆所受的合成风偏角对汽车气动特性的影响,计算挂车发生侧倾、侧滑的临界风速。结果表明,挂车位于横向不同位置时,在侧风的作用下其气动特性会发生改变,进行车辆的安全性分析时车辆气动力系数应考虑车辆的位置以及车辆所受合成风偏角的影响。  相似文献   

15.
为了寻求易于实现的控制策略,对ESP系统进行了仿真研究。基于轮胎魔术公式在Simulink中建立了7自由度的整车模型。从ESP的控制机理入手,以极限环理论作为ESP控制判据,使用带参数优化的PID方法实施横摆角速度和侧偏角的控制。在Simulink环境下分别建立了输入、输出、判据、控制、整车5个模块,在此基础上构建了ESP系统模型。ISO双移线仿真试验验证表明,带参数优化的PID控制策略可行,所建ESP系统控制效果明显。  相似文献   

16.
为了解决汽车行驶中的某些因素引起的失稳问题,在对汽车的失稳原因和控制方法的分析和研究的基础上,设计了以横摆角速度和质心侧偏角为控制量和失稳判据,以车轮的差动制动为控制手段的汽车稳定性控制系统。并分别设计了模糊 PID控制器和神经网络控制器,运用MAT-LAB/Simulink软件在7自由度汽车模型上进行了仿真。结果显示在危险状态下该控制策略能有效保持汽车轨迹对转向操作的跟随,该控制策略可靠有效。  相似文献   

17.
In order to track the desired trajectory for intelligent vehicle, a new hierarchical control strategy is presented. The control structure consists of two layers. The high-level controller adopts the model predictive control (MPC) to calculate the steering angle tracking the desired yaw angle and the lateral position. The low-level controller is designed as a gain-scheduling controller based on linear matrix inequalities. The desired longitudinal velocity and the yaw rate are tracked by the adjustment of each wheel torque. The simulation results via the high-fidelity vehicle dynamics simulation software veDYNA show that the proposed strategy has a good tracking performance and can guarantee the yaw stability of intelligent vehicle.  相似文献   

18.
为提高车辆行驶的主动安全性,引入分层控制思想。建立名义横摆角速度和名义质心侧偏角为输出的线性二自由度车辆模型。基于线性二次型调节器设计上层控制器,得到附加横摆力矩,采用差动制动原理,设计中层控制器对附加横摆力矩进行分配,根据中层控制器分配的附加横摆力矩计算滑移率增量,基于PID控制理论设计下层滑移率控制器,以控制车轮的制动压力;最后联合MATLAB/Simulink和CarSim进行鱼钩转向和双移线转向仿真试验。结果表明,采用分层控制能够有效地提高车辆行驶的主动制动稳定性。  相似文献   

19.
建立了整车的模型,用Matlab软件对车辆在不同车轮转角、不同车速及不同制动力矩情况下的动力学进行了仿真。仿真结果表明:随着车轮转角及车速的增大,车辆横摆角速度峰值、横向速度峰值增大;过大的制动力矩将使车辆横向侧滑加剧及使横摆角速度峰值变大,车辆在联合工况下的稳定性变差。仿真为车辆在联合工况下的建模和控制提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号