首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
在渗流计算理论与极限平衡方法的基础上,对库水位升降作用下路基边坡的瞬态渗流场与稳定性进行数值模拟与研究。研究结果表明:1)在库水位上升过程中,浸润线位置几乎与库水位的变化“同步”,只存在短时间的“滞后”效应;而在库水位下降过程中,滑坡体内浸润线位置严重滞后于库水位的变化。2)库水位上升期间,路基边坡孔隙水压力增加,安全系数增加,最高库水位(175m)持续期,路基边坡孔隙水压力增加,安全系数缓慢降低;库水位下降期间,路基边坡孔隙水压力降低,安全系数迅速降低,最低库水位(145m)持续期,路基边坡孔隙水压力降低。安全系数缓慢增加。  相似文献   

2.
该文以非饱和残积土库岸路基为例,基于饱和—非饱和渗流理论,分析了不同库水位下降速率、饱和渗透系数等对残积土路基渗流场影响规律。然后采用非饱和土力学原理,分析不同库水位下降速率、下降型式等对残积土路基稳定性作用机理。  相似文献   

3.
徐平  井卫卫 《路基工程》2015,(1):119-122
在库水位涨落下,对三峡库区邓家屋场库岸滑坡堆积体进行了非饱和渗流分析。在此基础上,考虑了黏聚力和内摩擦角的变异性,采用Monte-Carlo模拟法对库岸滑坡堆积体的稳定性进行了可靠度分析,得出了库水位上升时失效概率减小、下降时失效概率增大的变化规律,总体上,库水位下降对邓家屋场滑坡的稳定性最为不利,需对滑坡进行治理。  相似文献   

4.
许阿珍 《交通科技》2009,(Z1):127-128
滑坡形成于不同的地质环境,并表现为各种不同的形式和特征。对于处于库水实际运行条件下的滑坡来说,评价滑坡稳定性除了需要知道一些必须的饱和与非饱和岩土体物理力学参数外,还必须知道滑坡体内地下水活动的动态变化规律,准确预知滑坡体内水力分布情况。文中在传统极限平衡理论的基础上,重点讨论了饱和渗流作用下滑坡稳定性评价时考虑地下水影响的方法,以及库水位变化条件下的浸润线位置确定方法及原理,并利用非饱和土抗剪强度理论,提出了非饱和渗流作用下滑坡稳定性分析方法。  相似文献   

5.
以某高速公路库岸滑坡为工程背景,根据饱和—非饱和渗流控制方程,针对不同滑坡体渗透性和库水位升降速率,研究库水位变化条件下滑坡体内孔隙水压力的动态响应,得到:①水位升降时,在相同的入渗条件下,饱和渗透系数对初始地下水位有明显的影响;增大饱和渗透系数能降低地下水位,使地下水位线变得平缓,滑坡体的动、静水压力减小,有利于稳定;②增加库水位升降速率,地下水位响应滞后变得显著,地下水位线形态整体变陡,滑坡体的动水压力增大,不利于边坡稳定性。  相似文献   

6.
为了研究水位升降对沿湖路基边坡渗流场及稳定性的影响,基于饱和-非饱和渗流与非饱和抗剪强度理论对算例路基边坡在设计水位升降方案条件下的孔隙水压力、体积含水率、浸润线变化规律进行了分析,并在此基础上研究水位升降对其稳定性的影响。研究表明:对水位升降条件下路基边坡渗流场进行正确分析是进行稳定性研究的先决条件;水位上升将引起路基坡面深度一定范围内的孔隙水压力增大,在入渗影响范围内,基质吸力逐渐降低甚至消失。水位下降后,由于水体的渗出,湖水位面以上的路基土体孔隙水压力降低,路基含水率与孔隙水压力具有相似的变化特征;路基浸润线在水位升降过程中变化明显;水位升降过程引起的路基边坡安全系数的变化表现为迅速增大、缓慢降低、加速减小、缓慢增大4个阶段。  相似文献   

7.
邬凯  曹建军  李佳 《中外公路》2013,33(1):51-54
基于实测历史降雨气象资料,采用饱和—非饱和渗流有限元理论对常(德)—吉(首)高速公路朱雀洞滑坡进行了降雨入渗模拟,得到了边坡的瞬态渗流场.利用非饱和土强度理论,通过调用不同降雨时刻的渗流场结果,计算得到了滑坡的瞬态安全系数,分析了其失稳破坏的演化过程和滑坡成因,为降雨型滑坡成灾过程的模拟提供了借鉴作用.  相似文献   

8.
依托西南高拱坝库区某典型特大型库岸滑坡工程,基于速率关联度的相关性分析方法,研究了库岸滑坡坡表位移速率与库区水位波动变化速率的定量关系。结果表明:该滑坡变形属于渗流驱动型,降水期对滑坡变形影响显著,水位下降过程中难以消散的孔隙水压力与指向坡外的渗透力导致了滑坡的变形;在水位下降的初期因水库水的支撑作用显著减弱,滑坡变形最为强烈。  相似文献   

9.
为了研究库水位下降速率与渗透系数对边坡渗流稳定的影响规律,采用Geostudio2012数值模拟软件和敏感性系数法,以八字门滑坡为研究对象,将库水位下降速率与坡体的渗透系数作为边坡渗流稳定的重要影响因素进行边坡的稳定性模拟和敏感性分析,确定了库水位下降速率与渗透系数对边坡渗流稳定的控制作用大小。结果表明:八字门滑坡的渗流稳定对库水位下降速率的变化更为敏感。  相似文献   

10.
为明确水库滑坡消涨带变形破坏机理,以物理模型试验为手段,基于三峡库区堆积层滑坡工程地质特征,建立3种不同岩层倾角的滑坡消涨带试验模型。通过水库滑坡模型试验材料研制和库水位波动科学控制,实现水库滑坡消涨带失稳过程试验模拟,并从试验角度探讨水库滑坡消涨带变形特征和力学机制。结果表明:初次蓄水过程中,坡表裂缝交角与基岩倾角呈负相关,交角决定了裂缝扩展方向,影响变形发展;滑床倾角越大,交角越小,裂缝越长,变形越大,塌岸越易发生;坡内孔隙水压力滞后性明显,随周期增大逐渐减小趋于稳定,水位波动速率会缩短坡体地下水响应时间;波动速率越大,坡内孔隙水压力变化速率越大,对水下坡体影响最大,坡体内速率差越大,渗透力越大,进而影响滑坡的稳定性;土体结构劣化及水的浮托力是引起滑坡模型前缘破坏的关键因素,而动水压力作用及有效应力减小导致滑坡由局部向整体破坏,呈现典型的多重滑面渐进式牵引破坏模式。该研究结果有助于深入认识滑坡消涨带变形破坏机理,可为库水位波动触发牵引式滑坡的演化模式和力学机理提供依据。  相似文献   

11.
台风暴雨条件下福建霞碧滑坡渗流稳定性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
针对福建霞碧滑坡体在强降雨条件下的渗流及稳定性变化,运用seep与slope软件进行了渗流场的模拟和稳定性的计算。结果显示:在降雨的过程中雨水沿边坡表面近垂直入渗,降雨对深部影响较小,其主要影响在坡积土层。由于坡积土层的渗透性高于残积土层,长时间的持续降雨之后在坡积土层与残积土层交界面处出现的滞水现象,是造成霞碧滑坡处于蠕滑状态的根本原因。坡体的稳定性在降雨结束后的第一天最低,之后坡体的稳定性逐渐提高。其结果真实地反映了滑体稳定性现状和规律。最后,提出了相关的治理措施。  相似文献   

12.
选取三峡库区某处非饱和路堑边坡为研究对象,结合非饱和土流-固耦合理论,在不同水力路径条件下,计算得到坡体在整个调水周期阶段内的渗流场发展情况以及相应的边坡稳定性发展规律。研究结果表明:相同速率条件下,水位的变动类型(上升或下降)对坡体渗流场乃至稳定性所造成的影响也有所不同。水位陡升、缓慢上升以及水位骤降的作用阶段里,相应的边坡稳定性会持续降低,而水位缓慢下降的作用阶段里,受此影响的坡体稳定性会呈现出先降低后逐渐增加的规律。  相似文献   

13.
降雨条件下道路边坡地下水渗流分析   总被引:4,自引:2,他引:4  
降雨是影响道路边坡稳定的主要因素之一,根据岩土饱和-非饱和渗流理论,考虑降雨入渗的影响,利用有限元方法,对强降雨条件下公路边坡地下水渗流场动态进行了数值模拟,得到了降雨过程中边坡地下水压力水头、总水头变化、流速的变化规律,研究结果为道路边坡的稳定性分析和滑坡预测提供重要的分析数据。  相似文献   

14.
王宝亮  周勇  陈洪凯 《路基工程》2011,(3):169-171,175
滑坡发育机制的核心是滑动带在压剪荷载作用下的断裂扩展。将土质滑坡滑动带贯通过程分为初始裂纹、裂纹扩展、裂纹后缘闭合三个阶段。对滑坡破坏模型运用断裂力学、极限平衡理论,建立了滑坡破坏机制的力学分析方法。通过三峡库区故陵滑坡计算实例,证明了计算方法的可行性。  相似文献   

15.
为研究降雨期和停雨期的非饱和土边坡稳定性变化,使用饱和-非饱和渗流理论,分析了考虑前期降雨的边坡的渗透系数及孔隙水压力变化,得到各阶段边坡安全系数。结果表明:在降雨过程中孔隙水压力和渗透系数随深度的增加呈先减小后增大的规律;坡脚受前期降雨的影响较明显;受渗透系数较小和临界滑动面较深的影响,停雨后边坡安全系数仍持续减小。  相似文献   

16.
选取斜坡体的简化剖面,考虑降雨入渗因素,基于多孔介质饱和一非饱和渗流理论,模拟不同时间段边坡不同土层的渗流变化,并探讨各土层孔隙水压力随时间和空间的变化规律。数值模拟表明,随着降雨时间增加,边坡各土层孔隙水压力均呈上升趋势,随着水平距离和垂直距离增加,孔隙水压力曲线呈下降趋势;降雨入渗使土体渗流条件发生改变,水分向坡角范围渗透并积聚,导致坡脚处孔隙水压力骤增;降雨条件下含水量较之无降雨条件时有较大上升,随着时间增加各土层逐渐达到其储水能力而使含水量不再变化。因此,对于降雨条件下的土质边坡,坡脚尤其需要加强排水和防护。  相似文献   

17.
以非饱和渗流理论为基础,以广西某变电站填土边坡为工程实例,运用岩土体渗流有限元及边坡稳定性分析软件,分别对该填土边坡在不同时刻下的孔隙水压力分布状况、渗流路径、稳定性进行模拟分析。结果表明:降雨入渗主要通过改变土体孔隙水压力、土体含水率以及基质吸力,从而对边坡产生影响,随降雨入渗时间增大,边坡最危险滑面有下移趋势,安全系数逐渐下降。其中,在降雨48小时至72小时时间段内,填土边坡稳定性下降最为显著。如遇连续降雨情况,该填土边坡有很大的安全隐患。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号