首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于智能网联车辆(Connected Autonomous Vehicle, CAV)跟驰特性,本文研究CAV跟驰模型.考虑多前车电子节气门角度反馈,构建CAV跟驰模型,并应用稳定性分析方法,推导所提模型稳定性判别条件.以考虑3辆前导车的CAV跟驰模型为例,设计数值仿真实验,分析不同CAV比例时混合交通流的安全性.模型稳定性分析表明:所提模型相比已有模型(CAV的T-FVD模型及常规车辆FVD模型)具备更优的稳定域,且考虑前车数量越多、多前车反馈权重系数越大,所提模型的稳定性越好;相同取值条件下,距离越远处的前车反馈权重系数对所提模型稳定性的影响越大.数值仿真表明,CAV有利于降低交通流的车辆尾部碰撞安全风险.  相似文献   

2.
研究协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车头时距对不同CACC比例下混合交通流稳定性的影响关系,进而为CACC车头时距设计提供参考. 应用优化速度模型(Optimal Velocity Model,OVM)作为手动车辆的跟驰模型,PATH真车实验标定的模型作为CACC车辆的跟驰模型. 基于传递函数理论,推导混合交通流稳定性判别条件,计算关于CACC比例与平衡态速度的混合交通流稳定域. 分析混合交通流在任意速度下稳定所需满足的临界CACC比例与CACC车头时距的解析关系,提出随CACC比例增加的可变 CACC车头时距设计策略,并通过数值仿真实验验证所提可变CACC车头时距策略的正确性. 研究结果表明:在所提可变CACC车头时距策略下,CACC车头时距随CACC比例增加而逐渐降低,避免取值较大影响混合交通流通行能力的提升;当CACC比例大于35%时,混合交通流在任意速度下稳定.研究结果可为大规模CACC真车实验的实施提供理论设计参考.  相似文献   

3.
研究协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车头时距对不同CACC比例下混合交通流稳定性的影响关系,进而为CACC车头时距设计提供参考. 应用优化速度模型(Optimal Velocity Model,OVM)作为手动车辆的跟驰模型,PATH真车实验标定的模型作为CACC车辆的跟驰模型. 基于传递函数理论,推导混合交通流稳定性判别条件,计算关于CACC比例与平衡态速度的混合交通流稳定域. 分析混合交通流在任意速度下稳定所需满足的临界CACC比例与CACC车头时距的解析关系,提出随CACC比例增加的可变 CACC车头时距设计策略,并通过数值仿真实验验证所提可变CACC车头时距策略的正确性. 研究结果表明:在所提可变CACC车头时距策略下,CACC车头时距随CACC比例增加而逐渐降低,避免取值较大影响混合交通流通行能力的提升;当CACC比例大于35%时,混合交通流在任意速度下稳定.研究结果可为大规模CACC真车实验的实施提供理论设计参考.  相似文献   

4.
为了更好地模拟智能网联车辆(CAV)的跟驰特性, 在纵向控制模型(LCM)的基础上考虑V2V环境下多辆前车速度和加速度的影响, 构建了智能网联环境下的纵向控制模型(C-LCM); 对LCM和C-LCM进行稳定性分析, 比较了2个模型的交通流稳定域, 确定了不同通信距离时C-LCM对交通流稳定域的影响; 设计数值仿真试验对加速和减速的常见交通场景进行模拟, 分析了在V2V通信条件下CAV的跟驰行为特征; 仿真分析了CAV不同通信距离以及不同渗透率影响下的交通流安全水平; 构建了包含不同CAV渗透率的混合交通流基本图模型。研究结果表明: 交通流稳定域随着考虑前车数量的增多而增大, 当只考虑1辆前车时, 前车与本车的间隔越远, 车辆速度系数对C-LCM稳定域的影响越大; C-LCM可以提前对多前车的行为做出反应, 更好地模拟CAV的动力学特征, 在减速情景中速度超调量从0.15减少为0.08, 最大速度延迟时间由7.5 s缩短为4.9 s, 在加速情景中速度超调量从0.07减少为0.04, 最小速度延迟时间由3.5 s缩短为2.6 s; 随着CAV渗透率的提升, 交通流的安全水平不断提升, 当通信范围内有4辆CAV时, 交通流的安全性能达到最高, 其TIT和TET指标的最大减少量分别为57.22%和59.08%;随着CAV渗透率的提升, 道路通行能力从1 281 veh·h-1提升为3 204 veh·h-1。可见, 提出的C-LCM可以刻画不同车辆的跟驰特点, 实现混合交通流建模, 并降低混合交通流的复杂性, 为智能网联车辆对交通流的影响分析提供参考。   相似文献   

5.
为了探究车辆跟驰中车头间距与速度的关系函数,采用高精度车载GPS设备获取了大量基于时间序列的车辆跟驰数据,根据实测车头间距—平均速度关系构建了改进的优化速度函数.对原优化速度函数和改进的优化速度函数进行了参数标定,并对两个函数进行了微观向宏观交通参数的推导,结果表明,改进的优化速度函数能更好地描述车辆跟驰中微观和宏观交通参数之间的关系.最后对基于两种函数的全速度差跟驰模型进行了数值模拟,结果表明,基于改进的优化速度函数的跟驰模型具有更好的稳定性.  相似文献   

6.
基于智能交通诱导信息考虑前方多辆车,司机又通过后视镜考虑后方车辆,提出一种改进的耦合映射跟驰模型,用于描述单车道的交通流的动力学特性及其拥堵控制。利用离散延迟反馈控制动力学模式,通过调整模型中控制参数给出了抑制交通拥堵的策略。利用反馈控制理论,导出了在头车速度发生变化时,交通流保持稳定性的条件。分析结果表明,考虑前后方更多车辆的信息对交通流有致稳作用,亦即稳定性条件明显减弱。数值模拟证实了理论分析的正确性,通过与前人相关工作的比较得知,考虑前后方车辆的信息能够更有效地抑制交通拥堵。  相似文献   

7.
基于OVM模型的交通流混沌研究   总被引:1,自引:0,他引:1  
研究基于OVM模型的交通流混沌问题。用Matlab结合C 语言编写OVM模型的仿真程序来产生交通流时间序列。在一定的参数组合下,仿真研究交通流车队中不同序号的前后车辆之间的车头间距变化过程。通过分析这种车头间距变化过程的变化曲线并利用小数据量方法计算Lyapunov指数,证明了基于OVM模型产生的交通流中存在着混沌现象。讨论模型参数和仿真试验参数对该理论交通流运动状态的影响,给出相应的仿真研究结果,得出对于研究与应用交通流理论有益的结论。  相似文献   

8.
本文分析了交通微观动态性和传统GHR模型、考虑延误的最优速度模型和智能驾驶员模型的动态特性。传统GHR模型区别于其它两个模型的根本特征在于其仅描述车辆跟驰状态的关系,而其余两个模型则可较好地反映具有很强相互作用时车辆间关系,如自由流和车辆从初始状态开始加速的阶段。结果表明:(1) 最优速度模型和智能驾驶员模型较传统GHR模型具有更好的完整性;(2) 现有的最优速度模型可能产生不符合实际的车辆相互作用;(3) 考虑实际延误的最优速度模型可产生稳定的车辆间相互作用;(4) 智能驾驶员模型还需进一步改进,尤其是应考虑驾驶员延误这一微观交通仿真中的重要因素;(5) 这三个模型可产生相似的动态特性。  相似文献   

9.
为研究含智能网联汽车(Connected and Automated Vehicle, CAV)和人工驾驶汽车(Regular Vehicle, RV)混行交通流下CAV跟驰行为的控制问题,考虑前后多车的速度、车头间距、速度差、 加速差等参数,采用分子动力学定量表达不同周边车辆对主体车的影响,得到可用于描述CAV在 混行交通流中的跟驰过程。稳定性分析结果表明,与全速度差模型相比,本文提出的考虑前后多车信息的CAV跟驰模型有利于提高交通流的稳定性。数值仿真与模型验证结果表明,与PATH 实验室的CACC(Cooperative Adaptive Cruise Control)模型相比,本文建立的CAV跟驰模型平均速度最大误差减小了0.19 m∙s-1 ,平均误差减小26.79%,拟合精度提高了0.91%。同时,在CAV和 RV组成的混行交通流中,随着CAV比例的逐渐增加,车队的平均速度和交通流量逐渐增加。迟滞回环曲线表明,与全速度差(Full Velocity Difference, FVD)模型相比,本文提出的CAV模型控制下的交通流稳定性更强。该模型可用于同质流或CAV与人工驾驶车辆等混行环境下的CAV跟驰控制,在目前开展混行实车实验困难的情况下,为混行交通流场景下的车辆控制及交通设施规划设计提供理论依据和模型支持。  相似文献   

10.
基于自动驾驶车辆(AV)和常规人驾车辆(RV)混合行驶的情况,在全速度差(FVD)模型的基础上考虑了多前车和一辆后车的车头间距、速度、速度差、加速度差等因素,建立了适用于AV和RV 2种车辆的混行车辆跟驰模型;引入分子动力学理论定量化表达了周围车辆对主体车辆的影响程度;利用RV和AV混行场景跟车数据,以模型拟合精度最高为目标,对所有参数遍历寻优,进行标定;对比分析了混行车辆跟驰模型和FVD模型控制下交通流的稳定性,解析了车速对交通流稳定性的影响;设计了数值仿真试验,模拟了城市道路和高速公路2种常见场景,分析了混行车辆跟驰模型的拟合精度。研究结果表明:考虑周围多车信息有利于提高交通流的稳定性;车辆速度越低交通流稳定性越差;考虑多车信息的分子动力学混行车辆跟驰模型可以提前获得整个车队的运行趋势,更好地模拟AV的动力学特征;与FVD模型相比,在城市道路条件下混行车辆跟驰模型中的RV平均最大误差与平均误差分别减小了0.18 m·s-1和13.12%,拟合精度提高了4.47%;与PATH实验室的ACC模型相比,在高速公路条件下混行车辆跟驰模型中的AV平均最大误差和平均误差分别减小了7.78%和26.79%,拟合精度提高了1.21%。可见,该模型可用于混行环境下AV的跟驰控制与队列控制,以及AV和RV的跟驰仿真。   相似文献   

11.
与前方车辆距离是影响行车安全的重要因素,因此本文提出一种面向未来智能交通的前方车辆单目视觉测距方法.首先,提出融合物联网、智能识别、云计算技术的车联网模型,车辆可实时向车联网回传位置信息及前车图像,请求附近交通标志及前方车辆几何尺度信息,车辆端可计算图像坐标系下车道标志线、交通标志、车辆尺度信息.然后,建立单目相机数学模型,介绍以交通标志、车道分界线为合作标志的单目视觉测距方法.最后,综合应用单目视觉测距方法,设计了前方车辆自适应视觉测距方案.通过仿真实验,证明了单目视觉测距方法的正确性与有效性,可丰富驾驶辅助系统的前方车辆测距手段.  相似文献   

12.
为了分析自动驾驶车辆对交通流宏观特性的影响, 以手动驾驶车辆与自动驾驶车辆构成的混合交通流为研究对象, 提出了不同自动驾驶车辆比例下的混合交通流元胞传输模型(CTM); 应用Newell跟驰模型作为手动驾驶车辆跟驰模型, 应用PATH实验室真车测试标定的模型作为自动驾驶车辆跟驰模型; 计算了手动驾驶与自动驾驶车辆跟驰模型在均衡态的车头间距-速度函数关系式, 推导了不同自动驾驶车辆比例下的混合交通流基本图模型, 计算了混合交通流在不同自动驾驶车辆比例下的最大通行能力、最大拥挤密度以及反向波速等特征量, 依据同质交通流CTM理论建立了不同自动驾驶车辆比例下的混合交通流CTM; 选取移动瓶颈问题进行算例分析, 应用混合交通流CTM计算了不同自动驾驶车辆比例下的移动瓶颈影响时间, 应用跟驰模型对移动瓶颈问题进行微观数值仿真, 分析了混合交通流CTM计算结果与跟驰模型微观仿真结果之间的误差, 验证了混合交通流CTM的准确性。研究结果表明: 混合交通流CTM能够有效计算移动瓶颈的影响时间, 在不同自动驾驶车辆比例下, 混合交通流CTM计算结果与跟驰模型微观仿真结果的误差均在52 s以下, 相对误差均小于10%, 表明了混合交通流CTM在实际应用中的准确性; 混合交通流CTM体现了从微观到宏观的研究思路, 基于微观跟驰模型与目前逐步开展的小规模自动驾驶真车试验之间的关联性, 混合交通流CTM能够较真实地反映未来不同自动驾驶车辆比例下单车道混合交通流演化过程, 增加了模型研究的应用价值。   相似文献   

13.
为真实地反应车辆跟驰机理,假设在跟驰状态下,驾驶员倾向于保持最优跟驰间距,在分析最优间距函数的基础上,建立了车辆跟驰模型(optimal distance model, ODM).利用NGSIM数据,对ODM模型和经典Gipps车辆跟驰模型进行参数标定和评价.用仿真方法分析了ODM模型再现宏观交通流现象的能力和加速度特性.研究结果表明:与Gipps模型相比, ODM模型的加速度、速度和距离的仿真精度分别提高了0.36 m/s2、0.99 m/s和0.73 m,并能够再现实际交通流中稳定车流和冲击波等交通现象;在稳定交通流中, ODM模型总是趋向于使车辆间距等于最优跟驰间距,或在其附近小幅度波动.   相似文献   

14.
临近交叉口的车辆往往呈现出复杂多样的跟驰换道行为.基于二维最优速度(OV)交通流模型,本文构建了一个改进的双车道车辆跟驰换道模型,以刻画交叉口前路段上的车辆跟驰换道机制及车流宏观特征.借助模型分析了换道车辆比例、换道期望参数和跟驰安全距离等对交通流宏观特征的影响.结果表明:换道车辆比例对通过停车线的进口道流量有负面影响,换道行为越多,进口道流量越小.换道期望参数越大,换道成功率越大;当道路拥堵时,增大换道期望会减少进口道流量.增大安全距离,容易提升换道成功率但会减小进口道流量,同时促使拥堵发生.  相似文献   

15.
基于优化速度模型的城市交通微观尾气排放模型   总被引:1,自引:0,他引:1  
介绍了城市交通尾气排放模型的特点,提出建立微观交通流与现有排放模型相结合的思想.把微观交通流中的优化速度模型与微观尾气排放模型结合起来,建立了基于微观交通流的城市道路微观尾气排放模型.用武汉市的观测数据对优化速度模型参数进行了辨识,对10辆车在十字交叉路口启动过程中的尾气排放进行了动态仿真,仿真结果表明该模型可以模拟城市交叉路口车队启动过程中尾气排放的动态演化过程.  相似文献   

16.
为研究大型车辆转道及敏感驾驶行为对公路交通的影响,在SDNS(Sensitive Driving Nash)交通流模型基础上,引入长短车辆转道规则,假定双车道上同时存在长度和最大速度均不同的车辆,建立混合交通流模型.在周期性边界条件下,模拟得到当转道概率、混合比例、减速概率、车辆长度、速度等参数改变时,混合交通流的速度、流量与密度的基本图.仿真结果表明,系统临界密度、最大平均速度、流量随减速概率增加而减小;当慢速长车占总车辆比例大于50%时,更容易产生阻塞,此时车辆转道成功率小于5%;当系统中长车比例为50%时,流量峰值仅为0.42,比全小车的情况减少了20%;长车是造成转道困难的主要因素,当转道概率均为50%时,系统长车比例从25%增加至75%,转道成功率最大值由6.32%减少至2.78%.   相似文献   

17.
为使智能网联汽车(intelligent connected vehicle, ICV)在复杂交通环境下高效、安全地通过信号交叉口,在车联网实时获取信号灯和前车状态信息的基础上,建立了智能网联汽车通过信号交叉口的驾驶行为决策框架. 通过跟驰模型推导智能网联汽车和前方车辆在未来的行驶状态,预测得到前方车辆是否要通过交叉口的行为,进一步分别对智能网联汽车是领头车和跟随车时通过交叉口停止线的条件进行判断;将换道加入到驾驶方式中来寻求更高的通行效率,用基于换道时间模型的方法判断智能网联汽车换道后的通过条件;仿真对比分析了所提出模型和现有模型的决策能力,讨论了影响决策过程的关键因素. 研究结果表明:相比于现有模型,综合信号灯和前车行驶意图的决策方法能够提高智能网联汽车对通行条件判断的准确性,从而进行更合理的行为选择,随着单位绿灯剩余时间的增加,车辆决策通过交叉口的概率可提高20%,当前车道的车辆位置对决策结果影响显著.   相似文献   

18.
With the growing of vehicles ownership, the vehicular exhaust emissions have become major sources of air pollution in cities. In this paper, the pollutants, carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbon (HC) are considered as evaluation factors. On the basis of the relation between the emission factors and vehicle's velocity and the relation amongst three parameters (Volume, Speed, and Density) of traffic flow, we have designed a model. This calculates the total quantity of pollutants emission from vehicles based on speed, proportion of vehicle types, and traffic volume. Using the theory of nonlinear programming, we have formed an optimal model in which the link capacity is one main constraint and the minimum of the total quantity of pollutants emission is the goal and designed its algorithm solution. The aim of our research is to find a method to control the quantity of traffic pollutants emission through adjusting and controlling the composition of vehicle types, and then the traffic volume and vehicle's running speed indirectly. Finally, the feasibility of the model is justified through a practical example.  相似文献   

19.
相邻前车的驾驶行为会影响后车,因此先进的辅助驾驶系统需具备识别前车驾驶行为的能力. 对高速场景下相邻前车换道行为进行研究,分别提出双层连续隐马尔可夫模型-贝叶斯生成分类器(CHMM-BGC),以及基于双向长短时记忆网络(Bi-LSTM)的行为识别模型和意图预测模型. 采用自然驾驶数据集对模型的有效性进行测试验证. 实验分析表明:基于Bi-LSTM的行为识别模型相较于双层CHMM-BGC在平均识别率上提升了11.24%,两种行为识别模型均可在相邻前车换道过程的早期阶段识别换道行为;考虑相邻前车与周围环境车辆的交互作用,可使模型具有预测性,两种意图预测模型均可在车辆换道时刻前预测到驾驶人换道意图. 模型仿真计算时间可满足系统的实时性需求,为本车驾驶人预留出反应时间,为预测周围车辆行驶轨迹研究提供支持.  相似文献   

20.
为提高交通流运行的机动性、稳定性,对车辆协同巡航控制(CACC)系统进行了改进设计. 基于经典Newell 模型提出了考虑CACC的改进跟驰模型,分析了所提出的CACC改进跟驰模型的动力学特性,给出了CACC改进跟驰模型的线性稳定性条件,并对由CACC车辆和非CACC车辆组成的非均匀车队的不同无线通讯拓扑结构进行了比较研究. 通过数值试验进一步研究了在起步、刹车和意外事件的情况下,CACC车辆的存在对交通流动力学的影响. 研究结果表明,通过合理设计CACC跟驰系统的模型参数取值后,CACC车辆的存在一方面可以提高交通流运行的机动性与稳定性,另一方面可以使交通出行更加的安全和舒适. 此外,由于不同车队中CACC车辆的无线通讯拓扑结构会影响交通流的机动性与稳定性,对于 CACC车辆的无线通讯拓扑结构应慎重的设计与优化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号