首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
天津富民桥主桥为单塔空间索面自锚式悬索桥结构,介绍该桥主跨自锚式锚碇、边跨重力式锚碇及钢-混凝土过渡段的施工特点以及根据现场实际情况采取的有效措施.  相似文献   

2.
天津富民桥主桥为单塔空间索面自锚式悬索桥.主桥边跨3号锚碇为预应力混凝土重力式锚碇,采用深9.9 m的圆形基坑施工.主要介绍3号锚碇圆形深基坑的施工技术,特别是SMW工法在圆形无支撑围护结构施工中的应用.  相似文献   

3.
太洪长江大桥主桥为跨径808 m单跨简支钢箱梁悬索桥,南川岸采用隧道式锚碇,锚碇位于极软岩中,岩石天然饱和抗压强度为4.49 M Pa,围岩级别为Ⅴ级,地质条件差.针对锚碇工程地形、地质条件,通过在主索鞍处向外旋转边跨主缆及隧道式锚碇轴线角度2°,解决了隧道式锚碇浅埋以及2个锚塞体间距过小的问题;进行多参数比选,隧道式...  相似文献   

4.
自锚式悬索桥锚碇设计与计算方法   总被引:1,自引:0,他引:1  
根据自锚式悬索桥锚碇的受力特点进行计算分析。以天津富民桥锚碇设计为例,通过该桥锚碇的受力计算和分析,为今后国内设计、修建自锚式悬索桥锚碇提供一定的设计和计算方法。  相似文献   

5.
平树江  桂学  李玉青  郭斌 《公路》2012,(3):70-73
考虑柳青河桥的景观效果和满足河道通航要求,设计采用了独塔双索面自锚式无缝悬索桥,桥型优美轻便,主缆直接锚固在加劲梁梁端,节省了庞大的锚碇结构.由于主跨与边跨跨径比很大,在边跨适当配重的基础上,设计采用了半整体式桥台,利用桥台台身的重量来克服端支座拉力,既解决了拉力支座的问题,同时在该桥台处形成了无缝桥梁.重点介绍了柳青河自锚式无缝悬索桥的结构构造、设计要点及计算分析过程,以期供类似桥梁设计借鉴.  相似文献   

6.
温州瓯江北口大桥采用主跨2×800 m三塔双层桥面钢桁梁悬索桥,结合北锚碇区域地形、地质条件,经研究比选确定北锚碇采用重力式锚碇基础.北锚碇由整体锚块和两侧设置的前锚室、散索鞍支墩及对应基础、系梁组成.通过缩短主缆边跨长度、采用锚体与支墩分离式锚碇结构型式减少了山体开挖量及对环境的影响,并节省投资.采用便于维护、耐久性...  相似文献   

7.
天津富民桥主桥为单塔空间索面自锚式悬索桥,简述该桥主索鞍、主跨散索套、边跨散索套的结构组成,重点介绍主索鞍、散索套的加工制作工艺以及制作过程中的重点检验项目.  相似文献   

8.
一种自锚式悬索桥主缆线形的解析法   总被引:3,自引:5,他引:3  
在传统的地锚式悬索桥主缆线形方程的基础上,引入了自锚式悬索桥主缆、加劲梁和索塔的变形协调方程,得到一种自锚式悬索桥主缆线形的解析方法:该方法可以在不进行有限元分析的情况下,仅给出自锚式悬索桥的跨度、矢跨比以及主缆、加劲梁和索塔的截面属性,通过求解主缆线形方程和变形协调方程所组成的方程组,就能够求出主缆的初始线形和成桥线形、主缆的无应力长度、索鞍偏移量。该方法简单、准确、高效,已经成功地应用在金华康济桥的施工监控中,建成后主缆的成桥线形与设计线形非常接近,最大误差只有27mm,由于该方法能方便而快速地计算出索鞍的偏移量和主缆线形,对优化自锚式悬索桥边跨与主跨的比例提供了一种高效的算法。  相似文献   

9.
天津富民桥主桥整体结构空间分析与设计   总被引:2,自引:1,他引:1  
天津富民桥主桥为单塔空间索面自锚式悬索桥,桥塔为独柱,主跨主缆采用三维空间线形,在立面及平面投影皆为抛物线,边跨主缆采用1组(2根并排)缆索不加竖向吊索形式.主要介绍该桥的结构设计特点,并简述整体结构空间分析计算结果.  相似文献   

10.
为在悬索桥结构分析中精确计算锚跨索股的张力,建立了包括锚碇、散索鞍及锚跨索股在内的3节点组合单元,该单元精确考虑了锚跨内各索股的空间走向,满足索股与鞍座相切及节点间索股无应力长度不变两个重要务件,并能考虑锚碇的沉降对锚跨索股索力的影响.假定成桥状态锚跨索股张力的合理分布模式后,根据散索鞍的自立平衡条件及锚跨索股与散索鞍...  相似文献   

11.
介绍上海卢浦大桥—拱梁组合体系中承式系杆拱桥的设计概况 ,该桥在两端横梁之间布置强大的水平拉索 ,以平衡中跨拱产生的水平推力 ,水平拉索锚固在由边跨拱肋、边跨加劲梁和端横梁刚结而成的尾端节点的锚碇上面 ,因而尾端节点在大桥的结构总体受力上具有举足轻重的地位。本文重点介绍该尾端节点的功能、总体布置和设计施工要点  相似文献   

12.
沪通长江大桥主航道桥主跨1 092m,斜拉索采用双塔三索面、扇形密索体系,最长索长576.2m,最大索重83.5t,超长、超重斜拉索安装难度大。斜拉索采用先塔端挂设,再梁端牵引,最后塔端张拉的总体施工方案。短、中索采用常规的先塔端挂设后脱空展索的方式施工,长索采用斜拉索桥面整体运输及展索技术,按照先桥面展索后塔端挂设的步骤施工。短索采用卷扬机牵引系统完成斜拉索梁端牵引。中、长索采用梁端卷扬机快速牵引技术,加大卷扬机牵引力,将梁端锚杯向锚固位置牵引一段距离。中索、中跨长索梁端作业空间有限,采用钢绞线软牵引系统和梁端反压牵引技术完成梁端牵引;边跨长索采用常规的钢绞线软牵引系统完成梁端牵引。斜拉索张拉时,采用防扭转装置。为加快施工进度,29号墩斜拉索采用同步智能张拉系统,同步完成2层共12根斜拉索张拉。  相似文献   

13.
采用悬吊与斜拉组合而成的桥结构,是改变传统的双塔单跨或三跨悬索桥随着主跨的增大而加大主缆的截面和两端锚碇规模的工程量的惟一模式。杨泗长江大桥采用中间悬吊和两桥塔前后配以斜拉的方式,在保持同等跨越能力的条件下,既使桥梁提高了体系的刚度,又达到在材料使用上的合理配置。悬吊斜拉组合桥结构为世界大跨度桥梁的技术进步又提供了一种新的构思。  相似文献   

14.
冯传宝 《桥梁建设》2020,50(1):99-104
五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁,主缆采用预制平行高强钢丝索股结构,直径1.3 m。边跨加劲梁采用支架顶推法施工,中跨加劲梁采用缆载吊机由跨中向两侧对称架设,并在中跨侧靠近桥塔位置处合龙;主缆采用平行钢丝索股法架设。主缆制造时,采用无应力长度法计算各索股的无应力下料长度,并在主缆锚固区每处预留长度为±26 cm的垫板空间;主缆架设时,采用4根索股作为基准索股进行架设线形控制,并将主缆长度误差控制在-18~30 cm,均在误差控制范围内;加劲梁施工时,通过分析各因素对加劲梁线形的影响规律,提出控制二期恒载的措施;加劲梁合龙时,采取中跨钢梁不动、起顶边跨钢梁的合龙控制措施;在加劲梁合龙后加载二期恒载。加劲梁合龙后标高误差为-5^+63 mm,线形控制较好。  相似文献   

15.
台江大桥由两个110m主跨、两个60m辅跨、两个50m边跨对称布跨组成的拱塔斜拉索辅梁桥。主塔采用拱形钢结构直立塔,设置在桥梁中点处,高82.2m。0#对拉索采用了Y形组合拉索,其它普通拉索采用独特的空间V形索面布置。普通跨径的桥梁,通过塔、拱、梁、索四者巧妙结合形成索辅体系桥,将结构受力与美学需求结合为一体。  相似文献   

16.
浙江秀山大桥主桥为主跨926 m的双塔三跨连续钢箱梁悬索桥,全桥加劲梁共分89个安装节段,标准节段吊装重量212.6 t,最大吊装重量247.1 t。桥址处地理环境复杂、海洋环境恶劣,钢箱梁安装难度大。根据现场实际情况,钢箱梁中跨由跨中向桥塔方向对称吊装,两岸边跨由锚碇向桥塔方向对称吊装,先合龙中跨再合龙边跨。施工过程中,运梁船采用自航驳船动力定位+辅助钢丝绳定位;中跨和秀山岸边跨的一般梁段采用船舶运输+缆载吊机安装;官山岸边跨梁段采用移梁轨道存梁,然后采用液压同步提升系统安装;秀山岸边跨锚碇无索区梁段采用浮吊+轨道牵引纵移到位;桥塔无索区梁段采用缆载吊机+液压同步提升系统起吊荡移方式安装;边跨侧合龙段安装时,需对合龙口两侧梁段进行纵向牵引。  相似文献   

17.
天津富民桥主桥为主跨157.081 m、边跨86.4 m的单塔空间索面自锚式悬索桥.主跨主缆为三维空间线形,在立面及平面的投影均为抛物线.空间缆索系统在设计过程中,尤其是对多个关键节点构造施工过程中各影响因素的控制方面面临着诸多技术问题.简要介绍该桥空间缆索系统的关键技术.  相似文献   

18.
南京大胜关长江大桥钢梁架设与合龙技术   总被引:1,自引:0,他引:1  
京沪高速铁路南京大胜关长江大桥主桥为2联(84+84) m连续钢桁梁+(108+192+336+336+192+108) m六跨连续钢桁拱桥.大跨度连续钢桁拱主跨钢梁采用3层吊索塔架,钢梁与墩旁托架固结、3层水平索架设方法,主跨合龙采用以调整斜拉索和水平索、钢梁预先纵移为主要手段,不需顶落梁,实现钢梁跨中合龙的新技术.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号